Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
RELATIVISTIC MOMENTUM AND ENERGY
We have derived the addition of velocity
equation for motion parallel to the motion of
the moving frame
u—v
x
ux—
vux
2
c
Now we need the equation for motion
perpendicular to the direction of motion of the
moving frame.
From the Lorentz-Einstein Equation we have
y,=y
=y(t-)
1
Differentiate to get
dy’=dy
vdx\
dt’=y(dt—
j
2
c
Divide to get
dy’
dt’
dy
y(dt_
vdx’
c2)
Or
uy
y(1
—“‘
C2J
2
w
Di
(‘I
r)
D
r-I
(IJ
=
.
CD
Di
CD
Di
(DO
Di
CD
r+(D
‘0
r1
ZCD
CD(D
.
CD
(DO
II
II
CD
Di
(J
CD
-1
0
-‘
t7
( t)
x
-•
)1
:.
...
•
...:.,....
1Ue1i )I
N
—
UTXS
—
b1
b 4ê
—
I
II —. *b
b 411
b
1I
Ix
I
N
N
I
I
ii
.4-
/
/
:aidwexa joj
iaqo tpea o padsa qM UiAOW
ae sJaAJasqo OM atu ‘IeD!UaP! ae seq
at.j! ‘eq e Lfl!M pea SJaAJaSqO OM Jap!SUOJ
Or using the railroad car example.
Looking down on the railroad tracks:
0’ ystcin
[hrow
uL
C
(utdi
.z:ft
C’
+
I
i12
lb
()
‘rtirow arid catch
(a) As seen by 0
5
N)
II
%4J
-fl
0
CD
CD
(F)
-.
C
O
C
D
CD
(DO
O
—I,
0<
Di
D
CD
(DO
0
Di
C
(DO
r+
-
C
(F)
CDD
CD
Di
r)
-‘
0
r-I
EO
=
<
C)
DCD
CD
CD
t-I
-‘
-‘
-
(F)
r+
-‘
r+t
CD
DiCD
n
CD
CD
II
—.
C,)
CD
r+O
CD
D
CD
Di
0-1
CTD
Cn
CD
CD
0
-‘CD
Di
CD
CD
Di
CO
Cr,
Di
Di
—.2L
II
0
r
) CD
cr
Cr,
Momentum is not conserved if u *
Butz4 is
uy
y(1x)
ux=o
Thus
U
y
Y
Not
Momentum is not conserved.
7
co
-,
-
-
-‘
CD
C
0
—.
D
-
3
0
3
0
—‘
‘I
I,
CD
CD
“3
CD
33
0
CD
3
0
—0)0
CD
Oo
CD
0)
‘
QD
CD-00
r)
-
,,
0
ii
I,
-‘
CD
CD
CD
‘
CTCD
D
CD
,,
33
0)
II
—0
CD
(I)
D
ri
r+
0)
D
CT
CD
—hCD
<
0
P
0
CD
cz:
3
:
•
5
0(1
CD
CD
CU
CD
<
DD)
CD
Iiii
III-
II
CD
-‘
CD
II
0
CD
3
CD
-‘
Cr,
0)
CD
-‘
CD
CD
CD
3
i
CD
0)0
5•3
D
CDD
3
0
3
38
—1
0°
CD
We will show it from a different point of view
and do what some other books do.
Consider the equation
p=ymu
We can interpret this as the mass increasing
with velocity.
p
=
(relativistic mass)u
=
(ym)u
Then
9
0’ %y%tc;n
I hrow
(utch
:E:::
g
:z::
!:If;:
I
,
LJ/2
0
fhrow dnd Lat(.h
-
I
(a)AsseenbyO
For the observer in rest frame
Change in momentum for ball in rest frame
2 (mestuy)
Change in momentum for ball in moving frame
10
2 (mojngu)
=
2 mmovjng
(i
ux=o
2 (mmojgu)
=
2 [mmoving
2 (mmojngu)
=
0)1
2
m
movjng
Conservation of momentum the two changes
must be equal
11
2 (mrestuy)
mmo
-
=
2
m
mov ing
=
ymres t
This states that a moving mass has a larger
mass than the same object when moving.
The conservation of momentum holds if we
have a different definition of momentum
p=ymu
Or
Have a different definition for mass
mmovjng
=
ymrest
12
Either interpretation is proved with the
experiment of accelerating electrons and
measuring the momentum.
5
E 4
V
3
E
C 2
E
V
1
0
0
0.2 0.4 0.6 0.8 1.0 1.2
v/c
2GtJ6 Brooks!Ce
13
KINETIC ENERGY
WHAT WE DID IN BASIC MECHANICS
KE
WORK TO BRING OBJECT FROM REST
TO STATE OF MOTION WITH VELOCITY
=
K
=
CALCULATE THIS WORK AND IT IS THE KINETIC
ENERGY
WORK
=
FORCE X DISTANCE
Fds
AND
14
dv
F=m
dt
so
dv
I ds
K=m
ds= I m
dv
dt
dt
J
OR
K =fmvdv
If the object goes from 0 to some speed v
K
=
Vmvdv
0
f
=
mfVvdv
=
m
15
-
z
-n
-n
rn
rn
z
m
o
-
rn
rn
II
—1
C
z
rn
0
r)
-
rn
C
-n
-
C
—1
0
-‘
START WITH NEWTON’S SECOND LAW
d
F=
p
dt
Relativistic momentum
p=ymu
d
F=
ymu
dt
Kinetic Energy, K, then is force times distance
K=W= fFds=(ymu)ds
s=ut
17
ds=udt
So
K
=
f
=
K
=
d(yu)
mfu(yu)dt
mfud(yu)
=
udy + ydu
1
I
dy=d 1—
3
dy=
if
\
2
u
2C2)
2u
)du
2
(_
18
2
1_
d=
)
2
d(yu)=u
u
(
\
2
C
u /
2
2
u
1_
d(u)=
)
2
du
2
u
C2)
—3’
/2
dul+Ydu
u
2
)
2
du+(1_
_1/2
Find common denominator
19
d(yu)
du
=
(
C)
Put in KE Equation
du
K=mf U
(‘\
3
K=mc
I
F
I
3
K=mc
C)
udu
2
(c
—
1
—
)
2
u
3’
/2
i
2j
20
Put in the limits
1
3
K=mc
1
2
2
e
2
K=mc
[C
[2
2
K=mc
C
—
C
2
U
1
F
—1
2
me
—
/
C
2
me
C
K= 2
ymc 2
—
me
Or
K= (y—1)mc
2
21
2
K=(y—1)mc
K
=
2
ymc
2
ymc
=
—
2
mc
2
K + mc
ALL ENERGY UNITS
TOTAL ENERGY = KE
TOTAL ENERGY
=
E
=
+
MASS ENERGY
2
ymc
2
)fmc