Download Lesson 6: Pascal`s Triangle and Binomial Expansion

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Addition wikipedia , lookup

Location arithmetic wikipedia , lookup

Transcript
Lesson 6: Pascal’s Triangle and Binomial Expansion
Recall: The Fibonacci Sequence: 𝑑1 = 1, 𝑑2 = 1, 𝑑𝑛 = π‘‘π‘›βˆ’1 + π‘‘π‘›βˆ’2 , 𝑛 ∈ 𝑁, 𝑛 > 2
Part A – Pascal’s Triangle
ο‚· The array of numbers shown below is called Pascal’s triangle in honour of French
mathematician, Blaise Pascal (1623-1662).
ο‚· Each row is generated by calculating the sum of pairs of consecutive terms in the
previous row.
1
Row 0
1
1
1
1
1
2
3
4
Row 1
1
3
6
Row 2
1
4
Row 3
1
Row 4
Row 5
Part B – Binomial Expansion (𝒂 + 𝒃)
ο‚· Expand the following:
a) (π‘Ž + 𝑏)2 =
𝒏
Complete rows 5 & 6
Row 6
b) (π‘Ž + 𝑏)3 =
c) (π‘Ž + 𝑏)4 =
Notice the pattern of exponents on a and b above.
𝒂𝒏 , π’‚π’βˆ’πŸ 𝒃, π’‚π’βˆ’πŸ π’ƒπŸ , π’‚π’βˆ’πŸ‘ π’ƒπŸ‘ , π’‚π’βˆ’πŸ’ π’ƒπŸ’ , β‹― β‹― , π’‚πŸ π’ƒπ’βˆ’πŸ , π’‚πŸ π’ƒπ’βˆ’πŸ , 𝒃𝒏
Look at the coefficients in the above examples. Is there a connection between
them and Pascal’s triangle?
∴ (π‘Ž + 𝑏)𝑛 =? π‘Žπ‘› +? π‘Žπ‘›βˆ’1 𝑏+? π‘Žπ‘›βˆ’2 𝑏 2 +? π‘Žπ‘›βˆ’3 𝑏 3 +? π‘Žπ‘›βˆ’4 𝑏 4 β‹― β‹― +? π‘Ž2 𝑏 π‘›βˆ’2 +? π‘Ž2 𝑏 π‘›βˆ’1 +? 𝑏 𝑛
where ? is from the nth row of Pascal’s Triangle.
Note: For (π‘Ž + 𝑏)𝑛 the exponents for each term in the expansion must add to n,
and there will be 𝑛 + 1 terms.
Part C – More Examples
Example 1: Expand the following using the patterns you just observed.
a) (π‘₯ + 𝑦)5
a
b
n = ____ β†’ ____ terms and exponents for each term add to ____
Pascal’s Triangle row _____ β†’ ______________________________
(π‘₯ + 𝑦)5 =
b) (π‘₯ + 𝑦)8
a
b
n = ____ β†’ ____ terms and exponents for each term add to ____
Pascal’s Triangle row _____ β†’ ______________________________
(π‘₯ + 𝑦)8 =
c) (π‘₯ βˆ’ 𝑦)4
a
b
n = ____ β†’ ____ terms and exponents for each term add to ____
Pascal’s Triangle row _____ β†’ ______________________________
(π‘₯ βˆ’ 𝑦)4 =
d) (2π‘₯ βˆ’ 1)4
a
b
n = ____ β†’ ____ terms and exponents for each term add to ____
Pascal’s Triangle row _____ β†’ ______________________________
(2π‘₯ βˆ’ 1)4 =
e) (3π‘₯ βˆ’ 2𝑦)5 n = ____ β†’ ____ terms and exponents for each term add to ____
a
b
Pascal’s Triangle row _____ β†’ ______________________________
(3π‘₯ βˆ’ 2𝑦)5 =
Note: For the binomial expansions where b is negative, the terms will alternate
positive and negative
Example 2: Determine the value of k in each from the binomial expansion of a  b 11.
a) 462π‘Ž6 𝑏 π‘˜
b) 330π‘Žπ‘˜ 𝑏 4
Example 3: Determine the number of terms in the expansion if,
a) (2π‘Ž + 3𝑏)12
b) (4π‘₯ βˆ’ 3𝑦)27
Example 4: Factoring Using the Binomial Theorem:
Write 64p3 + 240p2q + 300pq2 + 125q3 in the form (π‘Ž + 𝑏)𝑛 .
Example 5: Factoring Using the Binomial Theorem:
Write 1 + 10π‘₯ 2 + 40π‘₯ 4 + 80π‘₯ 6 + 80π‘₯ 8 + 32π‘₯ 10 in the form (π‘Ž + 𝑏)𝑛 .