Download Eigenvalues and Eigenvectors

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 8.8 Eigenvalues and Eigenvectors
Matrix-vector multiplication can be thought of geometrically as
a linear transformation changing one vector into another
 4 2   −3   −4 

  = 

 5 1   4   −11
4x
5x
+
+
2y
y
=
=
0
6
 4 2  x   0 

  =  
 5 1  y   6 
 4 2 2   0

  =  
 5 1   −4   6 
Ax = b
What vector x gets transformed
into the vector b ?
Ax = λx
 4 2   2   −2 
2

   =   = −1 
5
1
−
5
5
   
 −5 

 4 2   1  6 
1

  =   = 6 
1
1
6
5

   
1
eigenvector eigenvalue
What vector x gets transformed
into λx ( a scalar mult. of the orig. x ) ?
Section 8.8 Eigenvalues and Eigenvectors
Solve:
Ax = λ x
( An×n )
Ax − λ x = 0
A−λI )x = 0
(
↑ ↑
matrix
vector vector
Need ( A − λ I ) to not be invertible, because if it was
we would only have the trivial solution x = 0.
⇓
Set det ( A − λ I ) = 0
This leads to an equation in λ called the characteristic equation.
The roots of the characteristic equation are the eigenvalues λ .
For each eigenvalue λ , find its eigenvector by solving ( A − λ I ) x = 0
1
 −1 1 0 


Find the eigenvalues of  1 2 1  .
 0 3 −1 
det ( A − λ I ) = 0 ⇒


−1 − λ
1
0
1
2−λ
3
0
1
−1 − λ
= ( −1 − λ )
2−λ
1
3
−1 − λ
+ ( −1)1
1
1
0 −1 − λ
= ( −1 − λ ) ( 2 − λ )( −1 − λ ) − 3 − ( −1 − λ ) = 0
= ( −1 − λ ) ( −2 − λ + λ 2 ) − 3 − ( −1 − λ ) = 0
= ( −1 − λ )  λ 2 − λ − 5 − ( −1 − λ ) = 0
(
)
= ( −1 − λ ) ( λ 2 − λ − 5 ) − 1 = 0
= ( −1 − λ ) ( λ − λ − 6 ) = 0
2
= ( −1 − λ )( λ − 3)( λ + 2 ) = 0
λ1 = −1, λ2 = −2, λ3 = 3
There must be an easier way ☺
Shortcut to finding the characteristic equation
2× 2
λ 2 − ( trace ( A ) ) λ + det ( A) = 0
3× 3
sum of the
diagonal entries
λ 3 − ( trace ( A) ) λ 2 + ( C11 + C22 + C33 ) λ − det ( A) = 0
sum of the diagonal cofactors
The only problem now is that you have to factor a cubic Find one root, then use synthetic (or long) division to get the
quadratic factor, then factor that (if possible)
n × n triangular or diagonal matrix
The eigenvalues are on the diagonal!
2
 −1 1 0 


Find the eigenvalues of  1 2 1 
 0 3 −1 


trace ( A ) = −1 + 2 − 1
=0
2 1
C11 =
= −2 − 3 = −5
3 −1
det ( A ) = −1
C22 =
−1 0
=1
0 −1
C33 =
−1 1
= −2 − 1 = −3
1 2
⇒ C11 + C22 + C33 = −7
2 1
1 1
= −1( −2 − 3) − 1( −1) = 6
+ (1)( −1)
3 −1
0 −1
Possible roots:
Characteristic Equation:
λ − 0 ⋅ λ − 7 λ − 6 = 0 ⇒ λ − 7λ − 6 = 0
3
using the 3 × 3 shortcut
λ 3 − ( trace ( A) ) λ 2 + ( C11 + C22 + C33 ) λ − det ( A) = 0
2
3
( since the constant term is
±1, ± 2, ± 3, and ± 6
− 6)
Plug these in until you find all the roots.
λ = 2 ? ⇒ 8 − 14 − 6 ≠ 0 No
λ 3 − 7λ − 6 = 0
λ = −2? ⇒ −8 + 14 − 6 = 0 Yes
λ = 1? ⇒ 1 − 7 − 6 ≠ 0 No
λ = −1? ⇒ −1 + 7 − 6 = 0 Yes λ = 3? ⇒ 27 − 21 − 6 = 0 Yes
λ1 = −1, λ2 = −2, λ3 = 3
Long division:
λ2 − λ − 6
λ + 1 λ 3 + 0λ 2 − 7 λ − 6
Or you could find one root, then use synthetic (or long) division
to find the quadratic factor.
Synthetic division:
−1 1 0 −7 −6
↓ −1
1
6
1 −1 − 6
0
−(λ3 + λ2 )
− λ 2 − 7λ
− ( −λ 2 − λ )
⇒ λ − 7λ − 6 = ( λ + 1) ( λ − λ − 6 )
3
2
− 6λ − 6
λ 3 − 7λ − 6 = 0 ⇒ ( λ + 1)( λ + 2 )( λ − 3) = 0
− ( −6λ − 6 )
0
 −1 1 0 


Find the eigenvectors of  1 2 1 
 0 3 −1 


Eigenvalues:
λ1 = −1, λ2 = −2, λ3 = 3
For λ1 = −1
z is free, let z = 1
( A − λ I ) x = 0 ⇒ ( A + I ) v1 = 0
0 1 0

1 3 1
0 3 0

0  R1 ↔ R2

0
0 
|
|
|
1 3 1

0 1 0
0 3 0

|
|
|
0

0
0  −3R2 + R3
1 3 1

0 1 0
0 0 0

|
|
|
0 x + 3y + z = 0 ⇒ x = −z

0 ⇒ y = 0
0 
 −1
v1 =  0 
1
 
For λ2 = −2
z is free, let z = 3
( A − λ I ) x = 0 ⇒ ( A + 2 I ) v2 = 0
1 1 0

1 4 1
0 3 1

|
|
|
0

0  − R1 + R2
0 
1 1 0

0 3 1
0 3 1

|
|
|
0

0
0  − R2 + R3
1 1 0

0 3 1
0 0 0

|
|
|
1
0 x + y = 0 ⇒ x = −y ⇒ x = 3 z

0  3 y + z = 0 ⇒ y = −31 z
0 
1
v2 =  −1
3
 
For λ3 = 3
( A − λ I ) x = 0 ⇒ ( A − 3I ) v3 = 0
 −4 1 0 | 0  R1 ↔ R2


 1 −1 1 | 0 
 0 3 −4 | 0 


x − y + z = 0 ⇒ x = y − z ⇒ x = 13 z
 1 −1 1 | 0 
 1 −1 1 | 0 
 1 −1 1 | 0 



 4R + R 

4
2 0
−3 4 | 0 
 0 −3 4 | 0  −3 y + 4 z = 0 ⇒ y = 3 z
 −4 1 0 | 0  1

 0 3 −4 | 0 
 0 3 −4 | 0  R + R  0 0 0 | 0 




 2
3
1
 
z is free, let z = 3
v3 =  4 
 3
 
3
8.8 # 18
1 6 0


Find the eigenvalues and eigenvectors of  0 2 1  .
 0 1 2


det ( A − λ I ) = 0 ⇒
1− λ
6
0
0
2−λ
1
0
1
2−λ
= (1 − λ )
2−λ
1
1
2−λ
= (1 − λ ) ( 2 − λ )( 2 − λ ) − 1 = 0
(1 − λ )  4 − 4λ + λ 2 − 1 = 0
(1 − λ ) λ 2 − 4λ + 3 = 0 ⇒ (1 − λ )( λ − 1)( λ − 3) = 0
λ1 = λ2 = 1, λ3 = 3
For λ1 = λ2 = 1
For λ3 = 3
( A − I ) v1 = 0
0 6 0

0 1 1
0 1 1

0 1 1

0 6 0
0 0 0

|
|
|
|
|
|
0

0
0  − R3 + R2
0 6 0

0 1 1
0 0 0

0
 0


0  −6 R1 + R2  0
 0
0 

x is free, let x = 1
1
0
0
|
|
|
1
−6
0
( A − 3I ) v3 = 0
0  R1 ↔ R2

0
0 
|
|
|
 −2 6 0
 0 −1 1

 0 1 −1

0  y = −z ⇒ y = 0

0 ⇒ z =0
0 
1
0

0

|
|
|
−3
−1
0
1
|
|
0
0
|
0
0 
0 
0
0 
0 
−1
2
R1
1
0

0

−3
−1
0
1
|
|
1
−1
|
0
0 
0  R2 + R3
⇒ x = 3 y ⇒ x = 3z
⇒y=z
z is free, let z = 1
1
v1 =  0 
0
 
 3
 
v3 =  1 
1
 
8.8 # 14
7 0 
Find the eigenvalues and eigenvectors of 
.
 0 13 
7 0 
 0 13  is a diagonal matrix (its eigenvalues are on the diagonal)


λ1 = 7 and λ2 = 13
For λ1 = 7
For λ2 = 13
( A − 7 I ) v1 = 0
( A − 13I ) v2 = 0
0 0
0 6

1
v1 =  
 0
|
|
0  x is free,let x = 1
0  ⇒ y = 0
 −6
 0

0
|
0
|
0  ⇒x=0
0  y is free,let y = 1
 0
v2 =  
1
The eigenvectors of a diagonal matrix will be the columns of the identity matrix.
4
Related documents