Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Coupled resonator slow-wave optical structures Jiří Petráček, Jaroslav Čáp [email protected] Parma, 5/6/2007 all-optical high-bit-rate communication systems - optical delay lines - memories - switches - logic gates - .... “slow” light nonlinear effects increased efficiency Outline • Introduction: slow-wave optical structures (SWS) • Basic properties of SWS – – – – – System model Bloch modes Dispersion characteristics Phase shift enhancement Nonlinear SWS • Numerical methods for nonlinear SWS – NI-FD – FD-TD • Results for nonlinear SWS Outline • Introduction: slow-wave optical structures (SWS) • Basic properties of SWS – – – – – System model Bloch modes Dispersion characteristics Phase shift enhancement Nonlinear SWS • Numerical methods for nonlinear SWS – NI-FD – FD-TD • Results for nonlinear SWS Slow light • the light speed in vacuum c • phase velocity v • group velocity vg How to reduce the group velocity of light? Electromagnetically induced transparency - EIT Ch. Liu, Z. Dutton, et al.: „Observation of coherent optical information storage in an atomic medium using halted light pulses,“ Nature 409 (2001) 490-493 Stimulated Brillouin scattering Miguel González Herráez, Kwang Yong Song, Luc Thévenaz: „Arbitrary bandwidth Brillouin slow light in optical fibers,“ Opt. Express 14 1395 (2006) Slow-wave optical structures (SWS) – – pure optical way A. Melloni and F. Morichetti, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. And Quantum Electron. 35, 365 (2003). Slow-wave optical structure (SWS) - chain of directly coupled resonators (CROW - coupled resonator optical waveguide) - light propagates due to the coupling between adjacent resonators Various implementations of SWSs coupled Fabry-Pérot cavities 1D coupled PC defects 2D coupled PC defects coupled microring resonators Outline • Introduction: slow-wave optical structures (SWS) • Basic properties of SWS – – – – – System model Bloch modes Dispersion characteristics Phase shift enhancement Nonlinear SWS • Numerical methods for nonlinear SWS – NI-FD – FD-TD • Results for nonlinear SWS System model of SWS A. Melloni and F. Morichetti, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. And Quantum Electron. 35, 365 (2003). J. K. S. Poon, J. Scheuer, Y. Xu and A. Yariv, “Designing coupled-resonator optical waveguide delay lines", J. Opt. Soc. Am. B 21, 1665-1673, 2004. System model of SWS fn bn M d f n 1 bn 1 Relation between amplitudes fn f n 1 r t bn r bn rf n tbn1 bn 1 fn bn 1 t r bn f n1 tfn rbn1 f n 1 r t 1 2 2 Transmission matrix fn bn M f n 1 fn M bn 1 bn 1t2 r2 r M t r 1 f n 1 f n1 tfn rbn1 bn 1 bn rf n tbn1 For lossless SWS it follows from symmetry: fn bn M d f n 1 t is exp ikd bn 1 real – (coupling ratio) r r1 exp ikd real r s 1 2 1 2 r1 1 t 2 r 2 r 1 exp( ikd ) M r1 exp( ikd ) t r 1 is Propagation in periodic structure fn bn M d f n 1 exp( id ) f n bn 1 exp( id )bn Bloch modes fn bn M f n 1 exp( id ) f n bn 1 exp( id )bn d eigenvalue eq. for the propagation constant of Bloch modes f f M exp( id ) b b sin( kd ) cos( d ) s A. Melloni and F. Morichetti, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. And Quantum Electron. 35, 365 (2003). J. K. S. Poon, J. Scheuer, Y. Xu and A. Yariv, “Designing coupled-resonator optical waveguide delay lines", J. Opt. Soc. Am. B 21, 1665-1673, 2004. Dispersion curves (band diagram) 1.6 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9 1.4 kd/2 1.2 FSR f res nd c f res nd c f res nd c nd c 1 nd FSR c 0.8 0.6 0.4 -0.5 0 d/2 0.5 Re( d)/2 Dispersion curves 0.4 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9 sin( kd ) cos( d ) s 0.2 0 0 0.1 0.2 0.3 0.4 0.5 kd/2 0.1 0.2 0.3 kd/2 0.4 0.5 Im( d)/2 -0.1 -0.2 -0.3 -0.4 -0.5 0 0.6 0.7 0.8 0.9 1 Re( d)/2 Bandwidth, B 0.4 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9 sin( kd ) cos( d ) s 0.2 0 0 0.1 0.2 0.3 at the edges of pass-band 0.4 0.5 kd/2 0.6 nd B c s sin( kd ) kd 2 arcsin s B2 FSR arcsin s 0.7 0.8 0.9 1 Re( d)/2 Group velocity 0.4 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9 sin( kd ) cos( d ) s 0.2 0 0 0.1 0.2 0.3 d dk vg v d d s sin (kd) v cos(kd) vg 2 for resonance frequency 2 vg v s 0.4 0.5 kd/2 0.6 0.7 0.8 0.9 1 Re( d)/2 Group velocity 0.4 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9 sin( kd ) cos( d ) s 0.2 0 0 0.1 0.2 0.3 0.4 0.5 kd/2 0.6 0.7 0.4 0.5 kd/2 0.6 0.7 1 s 2 sin 2 (kd) v cos(kd) 0.8 0.6 g v /v vg 0.4 0.2 0 0.3 GVD: very strong minimal very strong 0.8 0.9 1 Infinite vs. finite structure dispersion relation f / f res d / Jacob Scheuer, Joyce K. S. Poonb, George T. Paloczic and Amnon Yariv, “Coupled Resonator Optical Waveguides (CROWs),” www.its.caltech.edu/~koby/ COST P11 task on slow-wave structures One period of the slow-wave structure consists of one-dimensional Fabry-Perot cavity placed between two distributed Bragg reflectors DBR DBR Finite structure consisting 1, 3 and 5 resonators 1 M=1 M=23 M=35 Transmittance 0.8 0.6 0.4 0.2 0 -150 -100 -50 0 Frequency f-f res 50 [GHz] 100 150 Fengnian Xia,a Lidija Sekaric, Martin O’Boyle, and Yurii Vlasov: “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Applied Physics Letters 89, 041122 2006. experiment number of resonators theory 1550 nm Fengnian Xia,a Lidija Sekaric, Martin O’Boyle, and Yurii Vlasov: “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Applied Physics Letters 89, 041122 2006. Fengnian Xia,a Lidija Sekaric, Martin O’Boyle, and Yurii Vlasov: “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Applied Physics Letters 89, 041122 2006. Delay, losses and bandwidth L Ndn Leff n g vg sc c 1Leff 1 Nd n g 1c s loss per unit length loss B FSR Buse s 2 (usable bandwidth, small coupling) Jacob Scheuer, Joyce K. S. Poon, George T. Paloczi and Amnon Yariv, “Coupled Resonator Optical Waveguides (CROWs),” www.its.caltech.edu/~koby/ Tradeoffs among delay, losses and bandwidth 10 resonators FSR = 310 GHz propagation loss = 4 dB/cm s Jacob Scheuer, Joyce K. S. Poon, George T. Paloczi and Amnon Yariv, “Coupled Resonator Optical Waveguides (CROWs),” www.its.caltech.edu/~koby/ Phase shift ... effective phase shift experienced by the optical field propagating in SWS over a distance d eff d kd sin( kd ) cos( d ) s eff v vg ... is enhanced by the slowing factor Nonlinear phase shift intensity dependent phase shift is induced through SPM and XPM intensities of forward and backward propagating waves inside cavities of SWS are increased (compared to the uniform structure) and this causes additional enhancement of nonlinear phase shift Total enhancement: eff v v g J.E. Heebner and R. W. Boyd, JOSA B 4, 722-731, 2002 2 Advantage of non-linear SWS: nonlinear processes are enhanced without affecting bandwidth S. Blair, “Nonlinear sensitivity enhancement with one-dimensional photonic bandgap structures,” Opt. Lett. 27 (2002) 613-615. A. Melloni, F. Morichetti, M. Martinelli, „Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,“ Opt. Quantum Electron. 35 (2003) 365. Outline • Introduction: slow-wave optical structures (SWS) • Basic properties of SWS – – – – – System model Bloch modes Dispersion characteristics Phase shift enhancement Nonlinear SWS • Numerical methods for nonlinear SWS – NI-FD – FD-TD • Results for nonlinear SWS COST P11 task on slow-wave structures One period of the slow-wave structure consists of one-dimensional Fabry-Perot cavity placed between two distributed Bragg reflectors DBR DBR Kerr non-linear layers Integration of Maxwell Eqs. in frequency domain Ain Atr Aref x0 xL x One-dimensional structure: - Maxwell equations turn into a system of two coupled ordinary differential equations - that can be solved with standard numerical routines (Runge-Kutta). H. V. Baghdasaryan and T. M. Knyazyan, “Problem of plane EM wave self-action in multilayer structure: an exact solution,“ Opt. Quantum Electron. 31 (1999), 1059-1072. M. Midrio, “Shooting technique for the computation of plane-wave reflection and transmission through one-dimensional nonlinear inhomogenous dielectric structures,” J. Opt. Soc. Am. B 18 (2001), 1866-1981. P. K. Kwan, Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures“ Opt. Commun. 238 (2004) 169-174. J. Petráček: „Modelling of one-dimensional nonlinear periodic structures by direct integration of Maxwell’s equations in frequency domain.“ In: Frontiers in Planar Lightwave Circuit Technology (Eds: S. Janz, J. Čtyroký, S. Tanev) Springer, 2005. Maxwell Eqs. Ain Atr Aref x0 xL x E z ( x) ikcB y ( x) x 2 2 cB y ( x) ikn x, E z x E z ( x) x n x, E z x 2 n x n x E x 0 2 2 z Now it is necessary to formulate boundary conditions. Analytic solution in linear outer layers Ain Atr Aref x0 xL x Ez ( x) Ainexp in(0)kx Aref exp in(0)kx cB y ( x) n(0) Ain exp in (0)kx Aref exp in (0)kx Ez ( x) Atrexp in( L)k x L cBy ( x) n( L ) Atr exp in ( L )k x L Boundary conditions Ain Atr Aref x0 E z (0) Ain Aref cB y (0) n(0) Aref Ain xL x E z ( L) Atr cB y ( L) n( L ) Atr Admittance/Impedance concept q p 1 icB y Ez E. F. Kuester, D. C. Chang, “Propagation, Attenuation, and Dispersion Characteristics of Inhomogenous Dielectric Slab Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23 (1975), 98-106. J. Petráček: „Frequency-domain simulation of electromagnetic wave propagation in one-dimensional nonlinear structures,“ Optics Communications 265 (2006) 331-335. new ODE systems for q and E z E z ( x) kq( x) E z ( x) x 2 2 2 q ( x ) k q ( x ) n x, E z x x p and cB y 2 2 cBy ( x) kp( x)n x, pcBy ( x) cBy ( x) x 2 2 2 p( x) k 1 p ( x)n x, pcBy ( x) x The equations can be decoupled in case of lossless structures (real n) Lossless structures (real n) Ain Atr Aref x0 xL 1 2 S Re E H e x E z Imq 2 x is conserved E z x Imqx Atr nL 2 2 E z ( x) kq( x) E z ( x) x 2 2 2 q ( x ) k q ( x ) n x, E z x x decoupled Technique known Ain Atr ? Aref ? x0 xL Aref in (0) q(0) r Ain in (0) q(0) x q( L) in ( L ) q ( x) k q 2 ( x) n 2 x T RT 1 0 Advantage Speed - for lossless structures – only 1 equation Disadvantage Switching between p and q formulation during the numerical integration FD-TD 1 D=24 n_eff, D=24 D=48 n_eff, D=48 D=72 n_eff, D=72 analyticky Transmission 0,8 0,6 0,4 0,2 0 1,549 1,55 1,551 1,552 wavelength [ m] 1,553 1,554 1,555 FD-TD: phase velocity corrected algorithm A. Christ, J. Fröhlich, and N. Kuster, IEICE Trans. Commun., Vol. E85-B (12), 2904-2915 (2002). FD-TD: convergence 100,00% 10000 common formulation chyba Christ 10,00% 1000 chyba C čas C 1,00% 100 0,10% 10 time [min] relative error čas Christ corrected algorithm 0,01% 0 20 40 60 80 100 relative step [ x/ ] 120 140 1 160 Outline • Introduction: slow-wave optical structures (SWS) • Basic properties of SWS – – – – – System model Bloch modes Dispersion characteristics Phase shift enhancement Nonlinear SWS • Numerical methods for nonlinear SWS – NI-FD – FD-TD • Results for nonlinear SWS Results for COST P11 SWS structure is the same in both layers Ain n2 2 nonlinearity level F. Morichetti, A. Melloni, J. Čáp, J. Petráček, P. Bienstman, G. Priem, B. Maes, M. Lauritano, G. Bellanca, „Self-phase modulation in slow-wave structures: A comparative numerical analysis,“ Optical and Quantum Electronics 38, 761-780 (2006). Transmission spectra 0 1 period 2 periods 3 periods Transmittance λ =1.5505 μm normalized incident intensity Here incident intensity is about 10-6 However usually 10-4 - 10-3 P. K. Kwan, Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures“ Opt. Commun. 238 (2004) 169-174. W. Ding, “Broadband optical bistable switching in one-dimensional nonlinear cavity structure,” Opt. Commun. 246 (2005) 147-152. J. He and M. Cada ,”Optical Bistability in Semiconductor Periodic structures,” IEEE J. Quant. Electron. 27 (1991), 1182-1188. S. Blair, “Nonlinear sensitivity enhancement with one-dimensional photonic bandgap structures,” Opt. Lett. 27 (2002) 613-615. A. Suryanto et al., “A finite element scheme to study the nonlinear optical response of a finite grating without and with defect,” Opt. Quant. Electron. 35 (2003), 313-332. 10-2 L. Brzozowski and E.H. Sargent, “Nonlinear distributed-feedback structures as passive optical limiters,” JOSA B 17 (2000) 1360-1365. Here incident intensity is about 10-6 However usually 10-4 - 10-3 Upper limit of the most transparent materials 10-4 S. Blair, “Nonlinear sensitivity enhancement with one-dimensional photonic bandgap structures,” Opt. Lett. 27 (2002) 613-615. Are the high intensity effects important? (e.g. multiphoton absorption) normalized incident intensity Maximum normalized intensity inside the structure 2 periods 3 periods Selfpulsing 3 75% 2,5 50% 2 1,55015 25% 1,5 1,55017 1,55019 1,55021 0% 1 1,55023 1,55025 -25% 0,5 -50% 0 -75% -0,5 -100% 0 50 100 150 Čas [ps] 200 250 -1 300 Fáze [p] Propustnost 100% Selfpulsing 3 75% 2,5 50% 2 25% 1,5 1,55030 0% 1 1,55035 1,55040 1,55045 -25% 0,5 1,55050 -50% 0 -75% -0,5 -100% 0 50 100 150 Čas [ps] 200 250 -1 300 Fáze [] Propustnost 100% Conclusion SWS could play an important role in the development of nonlinear optical components suitable for all-optical high-bitrate communication systems.