Download lec6

Document related concepts

Electron mobility wikipedia , lookup

Anti-gravity wikipedia , lookup

Electrical resistivity and conductivity wikipedia , lookup

Transcript
ESE370: Circuit-Level Modeling, Design,
and Optimization for Digital Systems
Lec 6: September 19, 2016
MOS Model
Penn ESE370 Fall2016 – Khanna
You are Here: Transistor Edition
! 
Previously: simple models (0 and 1st order)
" 
! 
This week and next (4 lectures)
" 
" 
" 
! 
Comfortable with basic functions and circuits
Detailed semiconductor discussion
MOSFET phenomenology
Don’t Blink!
Rest of term
" 
Implications of the MOS device
Penn ESE370 Fall2016 – Khanna
2
Today
! 
! 
! 
MOS Structure
Basic Fabrication
Semiconductor Physics
" 
" 
" 
" 
" 
Metals, insulators
Silicon lattice
Band gaps
Doping
Field Effects
Penn ESE370 Fall2016 – Khanna
3
MOS
! 
Metal Oxide Semiconductor
Penn ESE370 Fall2016 – Khanna
4
MOS
! 
! 
Metal – gate
Oxide – insulator separating gate from
semiconductor
" 
! 
! 
Ideally: no conduction from gate to semiconductor
Semiconductor – between source and drain
See why gate input is capacitive?
gate
drain
source
semiconductor
Penn ESE370 Fall2016 – Khanna
5
Capacitor
! 
! 
Charge distribution and field?
How much charge on plates?
gate
drain
source
semiconductor
Penn ESE370 Fall2016 – Khanna
6
Idea
! 
! 
! 
Semiconductor – can behave as metal or insulator
Voltage on gate induces an electrical field
Induced field attracts (repels) charge in
semiconductor to form a channel
" 
" 
Semiconductor can be switched between conducting and
not conducting
Hence “Field-Effect” Transistor
gate
drain
source
semiconductor
Penn ESE370 Fall2016 – Khanna
7
Source/Drain Contacts
! 
Contacts: Conductors # metalic
" 
Connect to metal wires that connect transistors
Penn ESE370 Fall2016 – Khanna
8
Fabrication
! 
! 
! 
! 
! 
Start with Silicon wafer
Dope
Grow Oxide (SiO2)
Deposit Metal
Mask/Etch to define
where features go
http://www.youtube.com/watch?v=35jWSQXku74
Time Code: 2:00-4:30
Penn ESE370 Fall2016 – Khanna
9
Dimensions
! 
Channel Length (L)
Channel Width (W)
Oxide Thickness (Tox)
! 
Process named by minimum length
! 
! 
" 
22nm # L=22nm
Penn ESE370 Fall2016 – Khanna
10
Semiconductor Physics
Penn ESE370 Fall2016 – Khanna
11
Conduction
! 
! 
! 
Metal – conducts
Insulator – does not conduct
Semiconductor – can act as either
Penn ESE370 Fall2016 – Khanna
12
Why does metal conduct?
! 
(periodic table)
http://chemistry.about.com/od/imagesclipartstructures/ig/Science-Pictures/Periodic-Table-of-the-Elements.htm
Penn ESE370 Fall2016 – Khanna
13
Why does metal conduct?
Penn ESE370 Fall2016 – Khanna
14
http://commons.wikimedia.org/wiki/File:Periodic_Table_of_Elements_showing_Electron_Shells.svg
Why does metal conduct?
Penn ESE 370 Fall 2016 - Khanna
15
Conduction
! 
! 
Electrons move
Must be able to “remove” electron from atom or
molecule
Penn ESE370 Fall2016 – Khanna
16
Atomic States
! 
Quantized Energy Levels (bands)
" 
! 
Valence and Conduction Bands
Must have enough energy to change level (state)
Penn ESE370 Fall2016 – Khanna
17
Thermal Energy
! 
Except at absolute 0
" 
" 
There is always free energy
Causes electrons to hop around
" 
" 
….when there is enough energy to change states
Energy gap between states determines energy required
Penn ESE370 Fall2016 – Khanna
18
Silicon Atom
! 
How many valence electrons?
Penn ESE370 Fall2016 – Khanna
19
Silicon
! 
4 valence electrons
" 
" 
Inner shells filled
Only outer shells contribute to chemical interactions
Penn ESE370 Fall2016 – Khanna
20
Silicon-Silicon Bonding
! 
Can form covalent bonds with 4 other silicon atoms
Penn ESE370 Fall2016 – Khanna
21
Silicon Lattice
! 
Forms into crystal lattice
Penn ESE370 Fall2016 – Khanna
22
Silicon Ingot
1 impurity atom
per 10 billion
silicon atoms
Penn ESE370 Fall2016 – Khanna
23
23
Silicon Lattice
! 
Cartoon two-dimensional view
Penn ESE370 Fall2016 – Khanna
24
Outer Orbital?
! 
What happens to outer shell in Silicon lattice?
Penn ESE370 Fall2016 – Khanna
25
Energy?
! 
What does this say about energy to move electron?
Penn ESE370 Fall2016 – Khanna
26
Energy
Energy State View
Valance Band – all states filled
Penn ESE370 Fall2016 – Khanna
27
Energy State View
Energy
Conduction Band– all states empty
Valance Band – all states filled
Penn ESE370 Fall2016 – Khanna
28
Energy State View
Energy
Conduction Band– all states empty
Band Gap
Valance Band – all states filled
Penn ESE370 Fall2016 – Khanna
29
Band Gap and Conduction
Insulator
Metal
Ec
8ev
Ec
Ev
OR
Ev
Ev
Ec
Semiconductor
1.1ev
Penn ESE370 Fall2016 – Khanna
Ec
Ev
30
Doping
! 
Add impurities to Silicon Lattice
" 
Replace a Si atom at a lattice site with another
Penn ESE370 Fall2016 – Khanna
31
Doping
! 
Add impurities to Silicon Lattice
" 
! 
Replace a Si atom at a lattice site with another
Add a Group 15 element
" 
" 
E.g. P (Phosphorus)
How many valence electrons?
Penn ESE370 Fall2016 – Khanna
32
Doping
! 
Add impurities to Silicon Lattice
" 
! 
Replace a Si atom at a lattice site with another
Add a Group 15 element
" 
" 
E.g. P (Phosphorus)
How many valence electrons?
Penn ESE370 Fall2016 – Khanna
33
Doping with P
Penn ESE370 Fall2016 – Khanna
34
Doping with P
! 
End up with extra electrons
" 
! 
Donor electrons
Not tightly bound to atom
" 
" 
Low energy to displace
Easy for these electrons
to move
Penn ESE370 Fall2016 – Khanna
35
Doped Band Gaps
! 
Addition of donor electrons makes more metallic
" 
Easier to conduct
Semiconductor
0.045ev
1.1ev
Penn ESE370 Fall2016 – Khanna
Ec
Ev
ED
36
Localized
! 
Donor electron is localized
" 
! 
Won’t go far if no low energy states nearby
Increasing doping concentration
" 
" 
Ratio of P atoms to Si atoms
Decreases energy to conduct
Penn ESE370 Fall2016 – Khanna
37
Electron Conduction
Penn ESE370 Fall2016 – Khanna
38
Electron Conduction
Penn ESE370 Fall2016 – Khanna
39
Capacitor Charge
! 
Remember capacitor charge
++++++++
- - - - - - - - -
Penn ESE370 Fall2016 – Khanna
gate
drain
source
semiconductor
40
MOS Field?
! 
What does “capacitor” field do to the Donor-doped
semiconductor channel?
Vgs=0
No field
- -
- - - -
Penn ESE370 Fall2016 – Khanna
41
MOS Field?
! 
What does “capacitor” field do to the Donor-doped
semiconductor channel?
Vgs=0
No field
+
- -
- - - -
Penn ESE370 Fall2016 – Khanna
+ + +
- - -
Vcap>0
42
MOS Field?
! 
What does “capacitor” field do to the Donor-doped
semiconductor channel?
Vgs=0
No field
+
- -
- - - -
=
Penn ESE370 Fall2016 – Khanna
+ + +
- - -
+++++
Vcap>0
Vgs>0
Conducts
-----43
MOS Field Effect
! 
Charge on capacitor
" 
" 
" 
Attract or repel charges to form channel
Modulates conduction
Positive
" 
" 
Attracts carriers
"  Enables conduction
Negative?
" 
Repel carriers
"  Disable conduction
+++++
-----------
Penn ESE370 Fall2016 – Khanna
44
Doping
! 
What happens if we replace Si atoms with group 13
atom instead?
" 
" 
E.g. B (Boron)
Valance band electrons?
B
Penn ESE370 Fall2016 – Khanna
45
Doping with B
! 
End up with electron vacancies -- Holes
" 
! 
Acceptor electron sites
Easy for electrons to shift into these sites
" 
" 
Low energy to displace
Easy for the electrons to move
" 
Movement of an electron best viewed as movement of hole
Penn ESE370 Fall2016 – Khanna
46
Doped Band Gaps
! 
Addition of acceptor sites makes more metallic
" 
Easier to conduct
Semiconductor
Ec
0.045ev 1.1ev
Penn ESE370 Fall2016 – Khanna
EA
Ev
47
Hole Conduction
Penn ESE370 Fall2016 – Khanna
48
Field Effect?
! 
Effect of positive field on Acceptor-doped Silicon?
Vgs=0
No field
+
+ + +
Penn ESE370 Fall2016 – Khanna
49
Field Effect?
! 
Effect of positive field on Acceptor-doped Silicon?
Vgs=0
No field
+
+
+ + +
Penn ESE370 Fall2016 – Khanna
+ + +
- - -
Vcap>0
50
Field Effect?
! 
Effect of positive field on Acceptor-doped Silicon?
Vgs=0
No field
+
+
+ + +
=
Penn ESE370 Fall2016 – Khanna
+ + +
- - -
+++++
Vcap>0
Vgs>0
No conduction
51
Field Effect?
! 
Effect of negative field on Acceptor-doped Silicon?
Vgs=0
No field
+
+
+ + +
Penn ESE370 Fall2016 – Khanna
- - + + +
Vcap<0
52
Field Effect?
! 
Effect of negative field on Acceptor-doped Silicon?
Vgs=0
No field
+
+
+ + +
+ + +
- - -
=
Penn ESE370 Fall2016 – Khanna
- - Vcap<0
Vgs>0
Conduction
+++++
53
MOSFETs
! 
Donor doping
" 
" 
" 
! 
Excess electrons
Negative or N-type material
NFET
Acceptor doping
" 
" 
" 
Excess holes
Positive or P-type material
PFET
Penn ESE370 Fall2016 – Khanna
54
Big Ideas: MOSFET
! 
! 
Semiconductor can act like metal or insulator
Use electric field to modulate conduction state of
semiconductor
-----+++++
Penn ESE370 Fall2016 – Khanna
55
Admin
! 
HW due Wednesday
Penn ESE370 Fall2016 – Khanna
56