Download Notes for Test 1.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Notes for Test 1.
Math 142, Calculus II, Fall 2016
1
Definite Integrals
Example 1)
The integral of a piecewise function
Find the following integral:
Z
4
f (x) dx,
−3

2

 x if − 3 ≤ x ≤ −1,
where f (x) =
2x if − 1 < x ≤ 0,

 √x
if 0 ≤ x ≤ 4
Solution:
We use the property of splitting the integral over the interval of integration
Z 4
Z −1
Z 0
Z 4
f (x) dx =
f (x) dx +
f (x) dx +
f (x) dx
−3
−3
−1
0
Z 4
Z 0
Z −1
√
2
2x dx +
x dx
x dx +
=
−1
−3
3 −1
0
0
4
x 2
= + x2 + x3/2 −1
0
3 −3
3
−1 −27
2 √ 3
−
( 4) − 0
=
+ (0 − 1) +
3
3
3
2
39
26
− 1 + (8) =
= 13.
=
3
3
3
J
Example 2)
The integral of an absolute value function (Still piecewise function)
Find the following integral:
Z 3π/2
|sin x| dx.
0
Solution:
The sin x function is non-negative for x in the first and second quadrants, i.e., x ∈ [0, π], and nonpositive in the third and fourth quadrants, i.e, x ∈ [π, 2π]. Thus, on the interval of integration
[0, 3π/2], we have
(
sin x
if 0 ≤ x ≤ π,
|sin x| =
− sin x if π ≤ x ≤ 3π/2.
Notes for Test 1.
2
Math 142, Calculus II, Fall 2016
Therefore,
Z
3π/2
Z
π
Z
3π/2
|sin x| dx =
sin x dx +
(− sin x) dx
0
π
π
= − cos x + cos x|π3π/2
0
0
3π
− cos π)
2
= −(−1 − 1) + (0 − (−1)) = 3.
= −(cos π − cos 0) + (cos
J
Fundamental Theorem of Calculus II
Recall:
FTC(II): Suppose f (t) is a continuous function on [a, b]. Then, for any x ∈ [a, b]
Z x
d
f (t) dt = f (x).
(Case 1)
dx a
If instead of x you have a function g(x), then by the chain rule of derivative
Z g(x)
d
(Case 2)
f (t) dt = f (g(x)) · g 0 (x).
dx a
If instead of a you have a function h(x), then by splitting the integral into two integrals and then
using the chain rule of derivative
!
Z g(x)
Z g(x)
Z a
d
d
f (t) dt
(Case 3)
f (t) dt =
f (t) dt +
dx h(x)
dx
a
h(x)
!
Z g(x)
Z h(x)
d
f (t) dt
=
f (t) dt +
−
dx
a
a
Z h(x)
Z g(x)
d
d
=−
f (t) dt +
f (t) dt
dx a
dx a
= −f (h(x)) · h0 (x) + f (g(x)) · g 0 (x)
= f (g(x)) · g 0 (x) − f (h(x)) · h0 (x).
Example 1)
d
dy
Z
y
tan2 (x2 − 1) dx = tan2 (y 2 − 1).
0
Example 2)
d
dz
Z
csc(z/3)
e
0
x3 −x
csc3 (z/3)−csc(z/3)
dx = e
1
· − csc(z/3) cot(z/3) ·
3
1
3
= − csc(z/3) cot(z/3)ecsc (z/3)−csc(z/3) .
3
Notes for Test 1.
Math 142, Calculus II, Fall 2016
Note: The derivative of csc(z/3) by using chain rule is
d z 1
d
csc(z/3) = − csc(z/3) cot(z/3) ·
= − csc(z/3) cot(z/3).
dz
dz 3
3
Example 3)
d
dx
Z
x3
sec(t + 5) dt = sec(x3 + 5) · (x3 )0 − sec(sin x + 5) · (sin x)0
sin x
= 3x2 sec(x3 + 5) − cos x sec(sin x + 5).
3
Related documents