Download Illustrating the prototype structures of parts of speech

Document related concepts

Georgian grammar wikipedia , lookup

Transformational grammar wikipedia , lookup

Spanish grammar wikipedia , lookup

Latin syntax wikipedia , lookup

Modern Greek grammar wikipedia , lookup

Modern Hebrew grammar wikipedia , lookup

Agglutination wikipedia , lookup

Swedish grammar wikipedia , lookup

Japanese grammar wikipedia , lookup

Zulu grammar wikipedia , lookup

Malay grammar wikipedia , lookup

Compound (linguistics) wikipedia , lookup

Ancient Greek grammar wikipedia , lookup

Esperanto grammar wikipedia , lookup

Cognitive semantics wikipedia , lookup

Old English grammar wikipedia , lookup

Italian grammar wikipedia , lookup

French grammar wikipedia , lookup

Polish grammar wikipedia , lookup

Portuguese grammar wikipedia , lookup

Scottish Gaelic grammar wikipedia , lookup

Turkish grammar wikipedia , lookup

Inflection wikipedia , lookup

Sotho parts of speech wikipedia , lookup

Russian grammar wikipedia , lookup

Serbo-Croatian grammar wikipedia , lookup

Yiddish grammar wikipedia , lookup

Lexical semantics wikipedia , lookup

Junction Grammar wikipedia , lookup

Pipil grammar wikipedia , lookup

Transcript
University of New Mexico
UNM Digital Repository
Linguistics ETDs
Electronic Theses and Dissertations
5-1-2016
Illustrating the prototype structures of parts of
speech: A multidimensional scaling analysis
Phillip Rogers
Follow this and additional works at: http://digitalrepository.unm.edu/ling_etds
Recommended Citation
Rogers, Phillip, "Illustrating the prototype structures of parts of speech: A multidimensional scaling analysis" (2016). Linguistics ETDs.
Paper 28.
This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for
inclusion in Linguistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected].
PhillipGordonRogers
Candidate
Linguistics
Department
Thisthesisisapproved,anditisacceptableinqualityandformforpublication:
ApprovedbytheThesisCommittee:
WilliamCroft,Chairperson
MelissaAxelrod
IanMaddieson
i
ILLUSTRATINGTHEPROTOTYPESTRUCTURESOFPARTSOFSPEECH:
AMULTIDIMENSIONALSCALINGANALYSIS
by
PHILLIPGORDONROGERS
B.A.,HISTORY,OHIODOMINICANUNIVERSITY,2009
THESIS
SubmittedinPartialFulfillmentofthe
RequirementsfortheDegreeof
MasterofArts
Linguistics
TheUniversityofNewMexico
Albuquerque,NewMexico
May2016
ii
ACKNOWLEDGMENTS
First,Iwanttothankmyadvisor,Dr.BillCroft,forintellectualinspiration,
thoughtfulguidanceandencouragement,andremarkablepatience.Hisinfluence
permeatesallaspectsofthisthesis.
IamalsogratefulforthesupportofcommitteemembersDr.MelissaAxelrod
andDr.IanMaddieson.Theyhaveneverhesitatedtooffertheirtimeandwisdom—
evenonshortnotice—regardingthisthesisorotherresearch.
AspecialthanksgoesouttoDr.JamesandMariaMondlochfortheirtimeand
willingnesstosharetheirknowledgeofK’ichee’Mayan.Eveninthefaceofabstract
andrelativelyunnaturalelicitationprompts,theyrespondedwithpatienceand
valuableinsight.
IwouldliketoacknowledgefriendsandcolleagueswithwhomIhave
discussedthisresearchorrelatedtopics,includingDanielHieber,Matthew
Menzenski,StefanodePascale,MitchellSances,LoganSutton,MichaelWoods,and
TimZingler.
Last,andmostimportantly,IwouldliketothankmywifeChrista,my
children—Isaac,NoaRose,andMicah—andtherestofourfamilies.Timespenton
thisthesiswastimeawayfromthem.Inparticular,Christahasbeenboththeheart
andthecornerstoneofourhousehold,keepingmegroundedandourkidsinspired.
iii
ILLUSTRATINGTHEPROTOTYPESTRUCTURESOFPARTSOFSPEECH:
AMULTIDIMENSIONALSCALINGANALYSIS
by
PhillipGordonRogers
B.A.,History,OhioDominicanUniversity,2009
M.A.,Linguistics,UniversityofNewMexico,2016
ABSTRACT
RadicalConstructionGrammar(Croft2001)proposesthatpartsofspeech
canbeexplainedasprototypesthatemergefromtheuseofbroadsemanticclasses
ofwords—objects,properties,andactions—inbasicpropositionalactfunctionsof
discourse—reference,modification,andpredication.Thistheorypredictsthateach
ofthesebroadsemanticclasseswillbetypologicallyunmarkedinitsprototypical
propositionalactfunctionandrelativelymarkedinotherpropositionalactfunctions.
Becausethistheoryspeakstosuchabroadandfundamentalorganizationof
linguisticstructure,therichstructureoftheseprototypeshasnotbeenfully
exploredinacomprehensivemanner.Gradienceisakeycharacteristicof
prototypes(Rosch1978),anditisfoundforpartsofspeechinthecontinuumfrom
objectconceptstopropertyconceptstoactionconcepts.Thisgradience—andthe
semanticprimitivesthatmotivatethecontinuum—areexploredinmoredetail
withineachofthesebroadsemanticclassesthroughadiscussionoftheliteratureon
nounclasses,adjectiveclasses,andverbclasses.
Equippedwithalistofconceptualtargetsthatarepredictedtorepresentthe
rangeofprototypicalityforeachpartofspeech,thisthesissetsouttoillustratetheir
iv
prototypestructures.Forelevengenetically,geographically,andtypologically
diverselanguages,lexemesareidentifiedtorepresenttheseconceptualtargets.The
criteriaoftypologicalmarkednessisusedtoidentifyasymmetriesinhowthese
lexemesareformallyencodedrelativetoeachotheracrossthethreepropositional
actfunctions.Thesemarkednessasymmetriesarethencodedforandillustratedina
multidimensionalscalinganalysis.
Theinsightofthespatialmodelistwofold:First,itillustratesthetrue
prototypestructuresofpartsofspeechinwhichmanyconceptsclusteratthe
prototypesandafewendupontheperipheries.Evenmore,itrevealstherelative
strengthsoftheprototypes,confirmingthehypothesisofaweakeradjective
prototype.Second,thespatialmodelshedslightonthesemanticprimitivesthat
motivatetheprototypestructures,bothinternallyandinrelationtoeachother.
v
TABLEOFCONTENTS
LISTOFFIGURES...................................................................................................................viii
LISTOFTABLES......................................................................................................................ix
LISTOFABBREVIATIONS.......................................................................................................x
1. Introduction.......................................................................................................................1
2. Background........................................................................................................................3
2.1. Partsofspeechasprototypes...........................................................................................5
2.2. Prototypestructureandthesemanticcontinuumofpartsofspeech.................6
2.2.1. Objectsubclassification................................................................................................................8
2.2.2. Propertysubclassification.......................................................................................................10
2.2.3. Actionsubclassification............................................................................................................13
2.3. Typologicalmarkedness..................................................................................................15
2.3.1. Structuralcoding..........................................................................................................................17
2.3.2. Behavioralpotential...................................................................................................................18
2.3.3. Motivationsfortypologicalmarkedness...........................................................................21
2.4. Sourcesoftheprototypestructures............................................................................23
2.5. Cuttinguptheconceptualspace....................................................................................25
2.5.1. Semanticmaps..............................................................................................................................25
2.5.2. Multidimensionalscalinganalysis........................................................................................26
3. Dataandmethodology................................................................................................30
3.1. Selectionofthelanguagesample..................................................................................30
3.1.1. Geneticandgeographicdiversity.........................................................................................30
3.1.2. Diversityinpartsofspeechstrategies...............................................................................32
3.2. Datasources.........................................................................................................................33
3.3. Attestedpatternsofmarkedness..................................................................................36
3.3.1. Reference.........................................................................................................................................36
3.3.2. Modification...................................................................................................................................38
3.3.3. Predication......................................................................................................................................40
3.4. Codingthedata...................................................................................................................44
3.5. Dimensionality....................................................................................................................46
4. Methodologicalchallenges.........................................................................................48
vi
4.1. Cross-linguisticcomparison...........................................................................................48
4.2. Scope.......................................................................................................................................49
4.3. Theoreticalconstraints....................................................................................................49
4.3.1. Distributionalpotential.............................................................................................................49
4.3.2. Non-prototypicalinflectionalpotential.............................................................................49
4.4. Practicalconstraints.........................................................................................................51
4.4.1. Availabilityofdata.......................................................................................................................51
4.4.2. Generalizabilityanddetail.......................................................................................................51
4.4.3. Gradienceingrammaticality...................................................................................................52
4.4.4. Variationthatisnotcapturedinthestudyduetolistofconcepts.........................54
4.4.5. Precisioninmeaning..................................................................................................................55
4.5. Linguisticconsiderations................................................................................................56
4.5.1. Morphemecounting...................................................................................................................56
4.5.2. Choosingamonglexicalcandidates.....................................................................................57
4.5.3. Compounds.....................................................................................................................................57
4.5.4. Diachrony........................................................................................................................................58
4.5.5. Constructionalvariation...........................................................................................................60
4.5.6. Semanticshift................................................................................................................................62
4.5.7. Apparentarbitrariness..............................................................................................................66
5. Resultsanddiscussion................................................................................................68
5.1. Distributionoftheprototypes.......................................................................................71
5.2. Nounprototype...................................................................................................................75
5.3. Adjectiveprototype...........................................................................................................78
5.4. Verbprototype....................................................................................................................82
5.5. Interpretingthedimensions..........................................................................................86
5.6. Futureresearch..................................................................................................................88
5.7. Experience,conceptualstructure,andlinguisticform.........................................89
6. Conclusions.....................................................................................................................91
LISTOFAPPENDICES............................................................................................................93
REFERENCES........................................................................................................................117
vii
LISTOFFIGURES
Figure1.Conceptualspaceforpartsofspeech(Croft2001:92).........................................6
Figure2.Geographicdistributionofthelanguagesample....................................................30
Figure3.MDSanalysisofpartsofspeechwithpointsonly..................................................70
Figure4.MDSanalysisofpartsofspeechwithcuttinglinesonly.....................................71
Figure5.MDSanalysisofpartsofspeechwithconceptlabelsonly.................................72
Figure6.MDSanalysisofpartsofspeechwithpointsandprototypes...........................74
Figure7.Nounprototype.....................................................................................................................76
Figure8.Adjectiveprototype.............................................................................................................79
Figure9.Verbprototype......................................................................................................................83
Figure10.MDSanalysisofpartsofspeechforthree,six,nine,andelevenlanguages
(clockwisefromtopleft)............................................................................................................89
viii
LISTOFTABLES
Table1.Semanticpropertiesofprototypicalpartsofspeech(Croft2001:87)............7
Table2.Objectconceptsubclassificationandselectedexemplars....................................10
Table3.Propertyconceptsubclassificationandselectedexemplars..............................13
Table4.Actionconceptsubclassificationandselectedexemplars....................................15
Table5.Prototypicalinflectionalcategoriesforeachpropositionalactfunction
(Crofttoappear).............................................................................................................................20
Table6.Summarydataforthelanguagesusedinthisstudy(geneticclassification
andpopulationnumbersarefromEthnologue)...............................................................31
Table7.Selectedinsightsintothenatureofpartsofspeechfromtheauthorsofthe
referencematerials.......................................................................................................................33
Table8.TensedistinctionsofMaliVerbsaccordingtoVerbClass,transitivity,and
stativity(basedondataanddescriptioninStebbins2011).......................................42
Table9.AspectualdistinctionsinCreekVerbs(fromdataanddescriptioninMartin
2011)...................................................................................................................................................44
Table10.Fitnessstatisticsinone,two,andthreedimensionsfortheMDSanalysisof
partsofspeech................................................................................................................................68
Table11.Semanticpropertiesofprototypicalpartsofspeech(Croft2001:87)........81
Table12.Semanticpropertiesmotivatingtheprototypestructuresofpartsof
speech.................................................................................................................................................87
ix
LISTOFABBREVIATIONS
1
2
3
ACC
ASSOC B
CAUS CONTR COP
DEM DENOM
DUR
FOC
FUT
III
INF
IPFV
LOC
M
NFUT NPRS NPST OBJ
PERS PL
POSS PRED PRF
PRS
PST
RDP
SG
V
VENT firstperson
secondperson
thirdperson
accusative
associative
nounclass“B”marker(Ingush)
causative
contrastive
copula
demonstrative
denominalizer
durative
focus
future
nounclass“III”marker(Mali)
infinitive
imperfective
locative
masculine
non-future
non-present
non-past
object
personal
plural
possessive
predicatingparticle
perfect
present
past
reduplication
singular
nounclass“V”marker(Ingush)
venitive
x
1. Introduction
RadicalConstructionGrammar(Croft2001)proposesthatpartsofspeech
(noun,adjective,andverb)1canbeexplainedasprototypesthatemergefromthe
useofbroadsemanticclassesofwords—objects,properties,andactions—inbasic
propositionalactfunctionsofdiscourse—reference,modification,andpredication.
Thistheorypredictsthateachofthesebroadsemanticclasseswillbetypologically
unmarkedinitsprototypicalpropositionalactfunctionandrelativelymarkedin
otherpropositionalactfunctions.
Becausethistheoryaddressessuchabroadandfundamentalorganizationof
linguisticstructure,therichstructureoftheseprototypeshasnotbeenfully
exploredinacomprehensivemanner.Gradienceisakeycharacteristicof
prototypes(Rosch1978),anditisfoundforpartsofspeechinaconceptual
continuumfromobjectstopropertiestoactions.Thisgradiencewillbeexploredin
moredetailwithineachofthesebroadsemanticclassesthroughadiscussionofthe
literatureonnounclasses,adjectiveclasses,andverbclasses.
1Certainlabelingconventionsareusedthroughoutthispapertomakeclearthe
distinctionbetweenuniversalcategoriesandlanguage-particularones(following
Comrie1976;Bybee1985;Croft2001).Semanticnotionssuchaspropertiesor
semelfactives,aswellaspropositionalactfunctionssuchaspredication,willbe
writtenwithalowercasefirstletter.Thesearecross-linguisticconcepts.Languageparticularcategories,suchasAdjectivesorParticiples,arecapitalized.Labelsfor
reoccurringmorphosyntacticstrategies,suchasrelativeclausesorpredicate
nominals,arelowercase,eveniftherearelanguagesthatdonotusethatparticular
strategy.Finally,thecategoriesNoun,Adjective,andVerbareoftencapitalized,
followingthetheoreticalstanceofthispaperthattheyrepresentlanguageparticularcategories.However,theydoappearinlowercasewhentheyrefer—for
sakeofconvenience—totheconceptual-functionalprototypes,evenforprevious
researchwhichimplicitlyorexplicitlycharacterizesthemdifferently.
1
Equippedwithalistofconceptualtargetsthatarepredictedtorepresentthe
rangeofprototypicalityforeachofthepartsofspeech,thisthesissetsoutto
illustratetheseprototypestructures.Forelevengenetically,geographically,and
typologicallydiverselanguages,lexemeswillbeidentifiedtorepresentthese
conceptualtargets.Iwillusethecriteriaoftypologicalmarkednesstoidentify
asymmetriesinhowtheselexemesareformallyencodedrelativetoeachother
acrossthethreepropositionalactfunctions.Thesemarkednessasymmetrieswillbe
codedforandillustratedinamultidimensionalscalinganalysis.
Thegoalsofthismultidimensionalscalinganalysisaretwofold:First,the
analysisshouldconfirmthecharacteristicsoftrueprototypestructures:many
conceptsclusteredattheprototypesandafewconceptsinhabitingthe
peripheries—particularlybetweentwoprototypes.Evenmore,therelative
strengthsoftheprototypesshouldbeevidentintheanalysis.Ofparticularinterest
istheadjectiveprototype,whichhasbeenclaimedtobeweakeroreven
incomparabletothatofnounsandverbs.Second,themultidimensionalscaling
analysiscanshedlightonthesemanticprimitivesthatmotivatetheprototype
structures,asrelevantsemanticfactorswillcorrelatestronglywithparticular
dimensionsinthespatialmodel.
2
2. Background
Theexactnatureofpartsofspeechhasbeenacentraltopicoflinguistic
inquiryanddebatesinceatleastantiquity.Longbeforenativelanguagesofthe
PacificNorthwestwerepresentedasachallengetotheuniversaldistinction
betweennounsandverbs,Platofamouslydisputedtherealityof‘tableness’and
‘cupness’withDiogenestheCynic(Stanley1687).Atstakeisafundamental
organizationoflanguagestructure,andmanytermshavebeenusedforthis
phenomenonwithgreaterorlessertheoreticalimplications:partsofspeech,lexical
classes,wordclasses,grammaticalcategories,etc.InthispaperIwillmostoftenuse
partsofspeechforthesakeofconsistency;whenanyoftheothertermsareused,
theyaremeanttobesynonymous.Furthermore,partsofspeechcangenerallyrefer
toallthewordclassesinalanguage,fromlarge,lexical,openclassestosmall,
functional,closedclasses—andeverythinginbetween.Thisthesisfocusesonthe
basicpartsofspeechcommonlyreferredtoasnouns,verbs,andadjectives.Adverbs
areoftenincludedwiththesethree,andalthoughtheycanbeexplainedbythe
theorytowhichthispaperascribes,theyareexcludedinthisstudyinorderto
reasonablylimititsscope.
Itisawidely-heldbeliefthatpartsofspeechshouldbeidentifiedina
particularlanguageusingformalcriteria(Schachter&Shopen2007).Thesecriteria
includeaword’ssyntacticdistribution,itssyntacticfunction,anditsabilitytotake
varioussyntacticand/ormorphologicalinflections.Itfollowsfromthisthatpartsof
speecharelanguage-specific,andtherearecountlessexamplesintheliteratureto
illustratehowaparticularlexicalclassinonelanguagedoesnothaveexactlythe
3
samemembersasthepurportedlyequivalentlexicalclassinanotherlanguage.In
fact,thevariouscriteriawithinalanguagedonotalwaysyieldthesame
classifications,andthisleadstoimportanttheoreticalquestions(Schachter&
Shopen2007:4):Aretheretrulydiscretedistinctionsamongpartsofspeech?When
doesaclusterofgrammaticalcriteriaindicateadistinctionbetweenclasses,and
whendoesitindicateadistinctionbetweensubclasses?Whichcriteriaaremost
important?Mostanalysesofpartsofspeechinparticularlanguagesfailtoanswer
thesequestionsexplicitly,resultinginsomeamountofarbitrariness.Itseemsthat
formalcriteriaarenotsufficienttoexplainboththelanguage-particularaspectsand
cross-linguisticsimilaritiesofpartsofspeech.
Althoughthedelineationofpartsofspeechinalanguageisaccomplishedon
formalgrounds,theterminologyappliedtoalexicalclassonceithasbeenidentified
isoftenbasedonthesemanticnatureofitsmembers.Forexample,alexicalclass
identifiedinaparticularlanguagewilllikelybelabeledasNounsifmostofits
membersincludepeople,places,andthings.However,thismethodformatching
language-particularwordclasseswithunifyingsemanticlabelsisnotalways
straightforward.Inalanguagewithtwodistinctclassesofpropertywords,which
onegetsthetraditionalAdjectivelabelandwhatlabelisusedfortheotherclass?
Thesekindsofsemanticconsiderationsarenotenoughtovalidatecomparisonof
AdjectivesinonelanguagetoAdjectivesinanother.Thefactisthatlanguagesmake
differentdecisionsregardinghowmanylexicalclasses,wheretodrawtheline
betweenthem,andbywhichformalmeans.
4
Themissingcomponentinourunderstandingofpartsofspeechthusfaris
discoursefunction.HopperandThompson(1984)arguethatalllinguisticforms
lack‘categoriality’untilitisforcedonthembyuseinaparticulardiscoursefunction.
However—foreshadowingaprototypetheorythatinvokesbothdiscoursefunction
andlexicalsemantics—theywritethat“mostformsbeginwithapropensityor
predispositiontobecomeNounsorVerbs”(1984:747).Morerecentmodels(Croft
1991;Hengeveld1992)invokethepropositionalactfunctionsofreference,
modification,andpredication,whicharebasedonSearle’s(1969)workonspeech
acts.Thesepropositionalactfunctionsrepresentdistinctcommunicativegoals:
referenceservestoestablishareferent,modificationtomodifyanexistingreferent,
andpredicationtoreportonareferent’sstateofaffairs.
2.1. Partsofspeechasprototypes
Bringingtogetherpreviousinsights,Croft(1991,2001)proposesthatparts
ofspeechcanbeexplainedasprototypesthatemergefromtheuseofbroad
semanticclassesofwords—objects,properties,andactions—inthebasic
propositionalactfunctionsofdiscourse—reference,modification,andpredication.
Thistheorypredictsthateachofthesebroadsemanticclasseswillbetypologically
unmarkedinitsprototypicalpropositionalactfunction—objectsinreference,
propertiesinmodification,andactionsinpredication—andrelativelymarkedin
otherpropositionalactfunctions.Typologicalmarkednesswillbedefinedand
discussedinmoredetailinsection2.3,anditplaysanimportantroleinthe
methodologyofthispaper.Fornowitwillsufficetosaythatpatternsoftypological
5
markednessarebasedonformalcriteria,whichaswehaveseenisacritical
componentofanytheoryofpartsofspeech.
Moreover,theprototypetheoryofpartsofspeechalsoaccountsforboththe
semanticnatureofpartsofspeechandtheroleofdiscoursefunction.Figure1
featuresaconceptualspace(thistoolisdiscussedinmoredetailinsection2.5.1)for
partsofspeechthatillustrateshoweachbroadsemanticclasscanbeemployedin
eachpropositionalactfunction.Thedarkersectionsaretheprototypes:eachbroad
semanticclassisaprototypeoftheconstructionsofonepropositionalactfunction.
Figure1.Conceptualspaceforpartsofspeech(Croft2001:92)
REFERENCE MODIFICATION PREDICATION
OBJECTS
object
reference
object
modification
object
predication
identity
predication
PROPERTIES
property
reference
property
modification
property
predication
location
predication
ACTIONS
action
reference
action
modification
action
predication
2.2. Prototypestructureandthesemanticcontinuumofpartsofspeech
Croft’sconceptualspaceforpartsofspeechillustrateswelltheprototypes
thatresultfromcombinationsofbroadsemanticclassandpropositionalactfunction.
However,afundamentalcharacteristicofprototypestructureistheabsenceof
discreteboundaries(Rosch1978).Instead,prototypeshaveagradientdimension
alongwhichmembersofthecategorycanbeidentifiedasmoreorlessprototypical
6
tothecategory.Thisgradiencearisesfromtheintersectionofmanyindividual
attributes,whichinturncanbeeitherdiscreteorgradient.Themoreprototypicala
memberisofacategory,themoreattributesithasincommonwithothermembers
ofthecategoryandthefewerattributesithasincommonwithmembersof
contrastingcategories.
Forpartsofspeech,thecontinuumfromobjectstopropertiestoactionsisa
gradientdimension.Concerningtheconceptualspaceofpartsofspeech,Croftwrites
that,“theverticaldimensioncouldbeasfinelydividedassinglewordconceptsif
necessary”(Croft2001:94).ThiscontinuumhypothesiswasfirstdevelopedbyRoss
(1972),andhasbeenrefinedbyseveralotherssince(e.g.,Comrie1975;Givón1979;
Dixon1982;Croft1991,2001).Givón(1979)introducedtheideathattime-stability
differentiatesnounsfromverbs,andthatadjectivesfallsomewhereinthemiddleof
thiscontinuum.Croft(2001)splitsthisconceptintotransitorinessandstativity,and
heincludestwoothers:relationalityandgradability.Ahypothesisofthispaperis
thatthemultidimensionalscalinganalysiswillreflecttheinfluenceofthese
semanticprimitives.Morespecifically,theyareexpectedtodifferentiateobject,
property,andactionconceptclusters.
Table1.Semanticpropertiesofprototypicalpartsofspeech(Croft2001:87)
Objects
Properties
Actions
Relationality
nonrelational
relational
relational
Stativity
state
state
process
Transitoriness
permanent
permanent
transitory
Gradability
nongradable
gradable
nongradable
ThesemanticprimitivesinTable1wereproposedtomotivatethe
distinctionsamongthethreebroadsemanticclasses.Butwhatabouttheinternal
7
structureofeach?Itisclearfromtheliteraturethattheseclassesarenotinternally
homogeneouseitherformallyorsemantically.Fortunately,muchhasbeenwritten
abouttheformalandsemanticvariabilitywithinthesegroups,althoughmostly
undertheterminologyofnoun,adjective,andverbclasses.Infact,different
semanticfactorsseemtoberelevanttovariabilityandprototypicalitywithineachof
theseclasses.Foreachoneinturn,Iwillbrieflyreviewthepertinentliteratureand
usetheinsightsthereintobuildalistofconceptualtargetsforuseinthisstudy.The
goalisalistofconceptualtargetsthatrepresentthefullrangeofprototypicalityon
whicheversemanticdimensionsareexpectedtoberelevant.Ifthesemanticfactors
discussedintheliteraturearetrulymotivatingprototypicalityforaparticularpart
ofspeech,theprototypestructurewillbeborneoutinthespatialmodel.
2.2.1. Objectsubclassification
Themostimportantdevelopmentforunderstandingobjectconcept
prototypicalityhasbeentheextendedanimacyhierarchyfirstformulatedby
Silverstein(1976;seealsoDixon1979;Comrie1989;Croft2003).Thishierarchy
actuallyincludesthreesemanticdimensions:person,referentiality,andanimacy
(Croft2003:130).Theroleoftheextendedanimacyhierarchycanbefoundinmany
areasofmorphosyntax.Awell-knownexampleistheinflectionofnounsfornumber
(Corbett2000).Ifalanguageinflectsanimatenounsfornumber,itwillalsoinflect
fornumberallthecategoriesthatarehigheronhierarchy(e.g.,humannounsand
pronouns),butnotnecessarilythoseloweronthehierarchy(e.g.,inanimates).Some
languagesinflectmostorallpronouns/nounsfornumber,whileothersinflectonlya
8
verylimitedsubset—eitherway,thehierarchydetermineswhichcategoriesare
includedinthatsubset.Ithasbeensuggestedthatthesesemanticfactorsinteract
withotherfactorssuchasdefinitenessandtopicality(Comrie1989);thisisalmost
certainlytrue,butitisstillunclearhowmuchoftheireffectonmorphosyntactic
patternsisdirectandhowmuchisindirect.
Theroleofpersonisfoundamongpronouns,wherefirstandsecondperson
pronounsgenerallyoutrankthirdpersonpronouns.Forpurposesofscopeandin
considerationofthemethodologicalchallengesthattheywouldpresent,Ichosenot
toincludepronounsinthisstudy.Thereisevidencethatpronounsare
“superprototypical”membersofthenounprototype,lessmarkedthaneventhe
mostprototypicalcommonnouns(Croft1991:126-8).Forexample,Toqabaqita
Pronounsmakeathree-waynumberdistinctionwhileNounscontrastonlysingular
andplural(Lichtenberk2008:325).Similarly,referentialityisrelevantin
distinguishingpronounsfrompropernounsfromcommonnouns.Likepronouns,
propernounswereleftoutofthisstudy,leavingnovariationuponwhich
referentialitymightact.
Thisleavesanimacy,whichishypothesizedforthisstudytomotivate
prototypicalityamongobjectconcepts.ThelistofobjectconceptsinTable2isbased
onwell-knownnounclasses(seeforexampleLehmann&Moravcsik2000;Croft,to
appear),anditstronglyreflectsadimensionofanimacy.Foreachclass,exemplars
werechosenfortheirlikelihoodtobefoundinallormostofthelanguagesofthis
study.Whereitwaspossibletoincludetwoexemplarsfromasingleclass,
complementssuchasmale/female,higheranimate/loweranimate,large/small,
9
manmade/natural,etc.wereincludedtomaximizevariation.Thesameprinciples
forchoosingexemplarswereappliedforthepropertyconceptandactionconcept
subclassificationsdiscussedbelow.
Table2.Objectconceptsubclassificationandselectedexemplars
Class
Humans
Kinship
Animals
Plants/PlantProducts
Artifacts
BodyParts
Places
Material/Substance
Exemplars
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
2.2.2. Propertysubclassification
Adjectives(andthepropertyconceptstheyprototypicallyencode)have
receivedagreatdealofattentionovertheyearsfortheircontroversialpartof
speechstatus.Somelinguistsassertthatadjectivesareuniversalandonparwith
nounsandverbsasbasicpartsofspeech,whileothersciteevidencefromparticular
languagesinwhichadjectivesappeartobeincomparableornon-existent.Whilethis
studydoesfindevidenceforthevalidityofauniversaladjectiveprototype,this
findingdoesnotnecessitatethateverylanguagehasasolitary,dedicated,andeasily
10
delineatedcategoryofAdjectives.Rather,itisclearthatlanguage-particular
Adjectivecategoriescomeindifferentshapesandsizes,sotospeak.
Whilethevariationinadjectiveclassesissubstantial,itisnotunconstrained.
Inhisfamousarticle/chapter,“Wherehavealltheadjectivesgone?”,Dixon(1982)
identifiedsubclassesofpropertyconceptsbasedontheirsemanticcharacteristics.
Hedemonstratedwithcross-linguisticdatahowsomeofthesesubclassesaremore
centraltothecross-linguisticnotionofadjective,showingupasAdjectivesevenin
languageswithsmallAdjectivewordclasses;theseareage,dimension,value,and
colorconcepts.Othersweremoreperipheral,encodedasAdjectivesonlyin
languageswithlargeAdjectiveclasses.Furthermore,hefoundtendenciesamong
theseperipheralsubclasses:physicalpropertyandspeedconceptsaremorelikely
toshowupasVerbsinalanguage(ifnotAdjectives),whilehumanpropensitywere
morelikelytobeNouns.Dixon’sfindingshavesincebeenconfirmedandhis
subclassificationrefinedbysubsequentresearch.
Therearetwostudiesofadjectivalpredicationthatwereparticularly
importantforourunderstandingofpropertyconcepts.Inhistypologyofadjectival
predication,Wetzer(1996)foundthateveninlanguageswhereAdjectivesare
distinctfromNounsandVerbs,theyshowcharacteristicsthatmakethemeither
“nouny”or“verby”.Heconceptualizedthesefindingsaslanguage-specifictreatment
ofpropertyconceptsonthenoun-verbcontinuum,whereadjectivesaresomewhere
inthemiddle.Interestingly,heconcludesthatadjectivesareverbybydefault.
Inasimilarvein,LeonStassen’sIntransitivePredication(1997)examined
formalpatternsofintransitivepredicationinalargelanguagesample.Semantically,
11
hedividedintransitivepredicationintofourtypes:event,class-membership,
locational,andproperty-concept(representingverbs,nouns,adverbs,and
adjectives,respectively).Notably,hefoundthatconceptpredicatesdonothavetheir
ownprototypicalencodingstrategy,butinsteadtakeonthestrategyofoneofthe
othertypes.Basedontimestability,heestablishedanadjectivehierarchysimilarto
Dixon’s,fromhumanpropensityatoneendtogenderandmaterialattheotherend.
Thiscontinuumcorrelateswiththefrequencyatwhichthoseconceptstakenounlikeversusverb-likeencodingstrategies.Furthermore,Stassenintroducesa
tensednessparameterthatpitsmandatorytenseinflectiononVerbsagainstaverby
treatmentofAdjectivesinpredication.Simplyput,alanguagewillnothaveboth,as
thatwouldresultinmandatorilyassigningtensetorelativelytime-stableproperty
conceptsforwhichtenseisnotrelevantorappropriate.Thetensednessparameter
supportsthehypothesisthattemporalsemanticprimitivesareamongthose
motivatingtheprototypestructuresofpartsofspeech.
BothWetzerandStassenfocusonthemorphosyntacticrealizationof
propertiesinpredication.Aswe’veseen,predicationisjustonepropositionalact
functioninwhichpropertyconceptscanbeused,anditisn’teventheprototypical
functionforpropertyconcepts.However,theirworkrefinedourunderstandingof
thewhereparticularpropertyconceptsfallinthesemanticcontinuum.Furthermore,
theirconsiderationofanimpressiverangeofcross-linguisticdataservedto
elucidatethevariouswaysinwhichpropertyconceptscanbeformallyencoded
relativetoobjectconceptsandactionconcepts.Whenweconsiderproperty
12
conceptsinpropositionalactfunctionsotherthanpredication,manyofthesame
patternsemerge.
Justasforobjectconcepts,eightsubclassesofpropertyconceptswere
identifiedforuseinthisstudy.ThesearefoundinTable3,withtwoexemplars
representingeachclass.Thesubclassesareorderedfrommostobject-likeatthetop
tomostaction-likeatthebottom.
Table3.Propertyconceptsubclassificationandselectedexemplars
Class
Gender
Color
Form
Age
Value
Dimension
PhysicalProperties
HumanPropensity
Exemplars
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
2.2.3. Actionsubclassification
Thesubclassificationofactionconcepts(‘verbclassification’,formany)has
beendominatedbyadiscussionofaspectualstructure.Vendler(1967)identified
fourverbclasses—states,activities,accomplishments,andachievements—and
demonstratedforEnglishhowcertaingrammaticalbehaviorswerepredictable
basedonaVerb’saspectualclassification.Thedistinctionsamongtheseclassescan
13
beattributedtosemanticprimitivessuchasduration,telicity,andstativity.For
example,statesaredurative,atelic,andstative,whileachievementsare
instantaneous,telic,anddynamic.Laterresearchconfirmedthevalidityofthese
aspectualclassesforotherlanguages,andrefinedtheclassification(Comrie1976;
Smith1997;Croft2012;seealsoChafe1970;Hopper&Thompson1980;Langacker
1987;interalia).Forexample,cyclicachievements(alsoknownassemelfactives)
havebeenidentifiedasachievementsforwhichtheendstateisidenticaltothe
beginningstate.Cyclicachievementscanbejuxtaposedwithdirectedachievements,
inwhichtheactionresultsinachangeofstate.Forexample,theconceptHITcanbe
classifiedasacyclicachievement,whileBREAKisclassifiedasadirectedachievement.
Theprimarysubclassificationofactionconceptsforthisstudyisbasedonthese
aspectualclasses.
BuildingontheinsightsofFillmore(1970),BethLevin’s(1993)
comprehensiveinvestigationofEnglishVerbsyieldsamorefinely-grained
classificationthantheaspectualonedescribedabove.ByidentifyingVerbswith
similarsyntacticbehavioracrossarangeofsyntacticalternations,sheisableto
identifydozensofsemanticallyandgrammaticallycoherentsubclasses(e.g.,
“prepare”verbs,“chew”verbs,etc.).Levinandothershaveextendedthesefindings
toincludelanguagesotherthanEnglish(fordiscussionofcross-linguistic
applicabilityandrelevantcontributions,seeLevin,inpress).Ofcourse,notevery
oneofLevin’sVerbclassescouldbeincludedinthisstudy.Iattemptedtoinclude
exemplarsfromasmanydifferentLevin-inspiredverbclassesaspossible,andin
particularthoseclasseswhosemembersarefrequentcross-linguistically.
14
Table4showsthesubclassificationofactionconcepts,withaspectualclasses
representedinthefirstcolumnandLevin’sverbclassesrepresentedinthesecond
column.
Table4.Actionconceptsubclassificationandselectedexemplars
Class
2-ParticipantStates
InactiveActions
DurativeProcesses
CyclicAchievements
(Semelfactives)
DirectedAchievements
Type
Cognition
Desire
Emotion
Perception
Posture
Spatial/Possession
SocialInteraction
Consumption
Motion
ChangeofState
CreationVerbs
Emission
Contact
BodilyMovement
Existence
ChangeofPossession
ChangeofState
Exemplars
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
2.3. Typologicalmarkedness
Theconceptoftypologicalmarkednesswasinvokedinthediscussionofparts
ofspeechasprototypes.Inthissection,Iclarifythenotionofmarkednessasitis
usedinthispaperanddiscussthecriteriathroughwhichitismanifestedin
individuallanguages.
Theterm‘markedness’wasintroducedbythePragueSchooloflinguistic
theory(Trubetzkoy1931,1939/1969;Jakobson1932/1984,1939/1984,citedin
Croft2003),andhassincebeenusedindifferentwaysbydifferentanalyticaland
theoreticaltraditions.Inthispaper,Irefertomarkednessasitappliestocross-
15
linguisticuniversals,alsoknownas‘typologicalmarkedness’(Greenberg1966;Croft
1996).Croft(2003:87)summarizesmarkednessas“asymmetricorunequal
grammaticalpropertiesofotherwiseequallinguisticelements:inflections,wordsin
wordclassesandevenparadigmsofsyntacticconstructions.”Theseasymmetries
aremanifestedinparticularlanguagesthroughdifferentcriteria,whichwillbe
describedbelowandexemplifiedinSection3.3.
Croftmakesitclearthattypologicalmarkednessis“auniversalpropertyofa
conceptualcategory”ratherthanthepropertyofaspecificlanguageorconstruction
(2003:88).Thisistruefortheapplicationofmarkednesstopartsofspeech.The
conceptualcategoriesatstakearethecombinationsofbroadsemanticclassand
propositionalactfunction,andasFigure1shows,threeofthesecombinationsare
typologicallyunmarkedrelativetotheothers.Perhapscontroversially,Iwillalso
use‘marked’/‘unmarked’terminologytorefertolanguage-specificmanifestationsof
theuniversalpattern.Theselanguage-particularasymmetriesarealsoidentifiedby
justthatterm—‘asymmetries’—aswellastheirrelevantcriteria.However,theterm
‘asymmetry’doesnotcapturethedirectionoftheasymmetry,whichisessentialto
theconceptionofmarkednessatboththelanguage-specificanduniversallevels.
Therefore,Iwilloftenrefertoalanguage-particularconstructionas‘marked’
relativetoaparallelconstruction.Itisthesenumerouslanguage-specificdirectional
asymmetriesthatcollectivelyconstitutethepatternoftypologicalmarkednessfor
thatcategoryanditscorrespondingvalues.
Furthermore,markednessisessentiallyarelationbetweentwovalues.A
constructionviewedinisolationcannotbedescribedasmarkedorunmarked;
16
rather,itcanbeidentifiedassuchrelativetoaparallelconstructionaccordingtoone
ofseveralcriteria.ItisthesecriteriathatIturntonext.
2.3.1. Structuralcoding
Onecriterionoftypologicalmarkednessisstructuralcoding,whichentailsan
asymmetryintheformalexpressionoftwoormorevaluesofacategory(Croft
2003).Thisasymmetryisoneofquantity.Forstructuralcoding,thequantityisthe
numberofmorphemesneededtoexpressthevaluesforthecategoryinquestion2.
Structuralcoding:themarkedvalueofagrammaticalcategorywillbeexpressed
byatleastasmanymorphemesasistheunmarkedvalueofthatcategory(Croft
2003:92)
Zerocoding—thatis,theformalexpressionofavaluewithoutanovertmorpheme—
isacommonstrategyformanycategoriesandmanylanguages.Alternatively,values
canbeexpressedthroughovertcoding.
Itisimportanttorememberthattheasymmetryisauniversalone,whichis
notnecessarilyrealizedineachlanguage.Thephrasing“atleastasmany”inthe
definitionaboveiskey.Croftusesthecategoryofnumbertoillustratethispoint.
Singularisclaimedtobeanunmarkedvaluefornumberrelativetoplural.Indeed,
forlanguagesinwhichthereisanasymmetryinthenumberofmorphemesneeded
toexpressthesevalues,thepluralisalmostalwaysthevaluethatrequiresmore
morphemes.Yetforsomelanguages,bothvaluessingularandpluralareexpressed
equallyintermsofnumberofmorphemes—eithertheyarebothzero-coded,orboth
2Countingmorphemesanddeterminingwhichmorphemestocountarenot
uncontroversialendeavors.ThereaderisreferredtoCroft(2003:ch.4)for
discussion.
17
overtlycoded.Still,theselanguagesdonotviolatetheclaimthatsingularis
unmarkedrelativetoplural.Evenforcategoriesinwhichthereisnoasymmetryina
particularlanguage,thetypologicalmarkednesspatternremainsvalid.
2.3.2. Behavioralpotential
Thesecondcriterionoftypologicalmarkednessisbehavioralpotential,
whichreferstotheversatilityofavaluerelativetoothervaluesofacategory.This
versatilitycanbeexpressedintwoways,correspondingtotwotypesofbehavioral
potential.First,inflectionalpotentialreferstothemorphologicaldistinctionsthata
valuecanexpress;avalueisrelativelyunmarkedifitcaninflectformorecrosscuttingcategoriesthanacomparablevalue.
Inflectionalpotential:ifthemarkedvaluehasacertainnumberofformal
distinctionsinaninflectionalparadigm,thentheunmarkedvaluewillhaveatleast
asmanyformaldistinctionsinthesameparadigm(Croft2003:97)
Amoresubtleinflectionalpotentialdistinctioncanalsobemadebasedonhowthe
inflectionisaccomplishedmorphosyntactically.Fromleastmarkedtomost,the
inflectionmaybeaccomplishedbyinternalchange,affixation,orperiphrasis.These
assignmentsofmarkednessarebasedontokenfrequency(see2.3.3):suppletive
inflectionsaregenerallyfoundonlexemesofhighfrequency,affixationcoversa
widerangeoflexemefrequencies,andperiphrasticconstructionsareoften
employedforlowfrequencylexemes.
Second,distributionalpotentialreferstothesyntacticcontextsinwhicha
valuecanoccur;avalueisrelativelyunmarkedifitcanoccurinmoresyntactic
contextsthanacomparablevalue.Unfortunately,acomprehensiveinclusionof
18
distributionalpotentialisbeyondthescopeofthisstudy.Astraightforwardinstance
ofdistributionalpotentialforpartsofspeechwouldbealanguagethatdoesnot
allowpropertyconceptstobeusedinreference,forexample.However,Ifoundno
explicitevidenceforthistypeofprohibitioninanyofthelanguagesofthisstudy.3
Therearemoresubtlewaysinwhichdistributionalpotentialinteractswithpartsof
speech,buttheyarenumerousandlanguagedescriptionsarenotconsistentinthe
inclusionandorganizationofthiskindofinformation.Forthesereasons,the
analysisofmarkednesscriteriainthisstudyislimitedtostructuralcodingand
inflectionalpotential.
Asitappliestopartsofspeech,thecriterionofinflectionalpotentialmust
alsospecifywhatcategoriesofinflectionarerelevant.Thegreatestinflectional
potentialisfoundattheprototypes—prototypicalcombinationsofbroadsemantic
classandpropositionalactfunction—anddifferentinflectionalcategoriesshowup
ineachoftheprototypes.Table5liststheprototypicalinflectionalcategoriesfor
eachpropositionalactfunction.Fromtheseprototypes,inflectionalcategoriescan
extendvertically(intermsofCroft’sconceptualspaceinFigure1),applyingtothe
useoftheotherbroadsemanticclassesinthesamepropositionalactfunction;or
theycanextendhorizontally,applyingtotheuseofthesamebroadsemanticclassin
theotherpropositionalactfunctions.Becausethemethodologyofthisstudyisto
compareconcepts(representedbycorrespondinglexemesinparticularlanguages)
toeachotherinidenticalcontexts,onlytheverticalextensionsofinflectional
categoriesdescribedaboveareconsideredinthisstudy.Thecontextforcomparison
3Ifoundonlytheoccasionallackofinformationaboutwhetherornotitispossible.
19
ofconceptsisaparticularpropositionalactfunctioninaparticularlanguage,soonly
theinflectionalcategoriesprototypicaltothatpropositionalactfunctionare
relevant.Horizontalextensionsofinflectionalcategoriesareresidual;alexememay
retaininflectionalpotentialfromitsmorphosyntacticexpressionintheprototype
evenwhenitisusedinotherpropositionalactfunctions.Sincetheseinflectional
categoriesarenotequallyavailabletoallconcepts(becausetheyhavedifferent
prototypes),theyarenotappropriatemeasuresforcomparingacrossconcepts(see
also4.3.2).
Table5.Prototypicalinflectionalcategoriesforeachpropositionalactfunction(Croft
toappear)
Reference
size
number
definiteness
deixis
case
Modification
degree
indexation
linker
Predication
voice
aspect
tense
modality
evidentiality
speechact
polarity
indexation
Tosummarize,markedvaluesofacategoryrequireequalormorestructural
codingandexhibitequalorlessbehavioralpotentialthantheirunmarked
counterparts.Inapartsofspeechstudy,whatarethecategoriesandvaluesrelevant
formarkedness?Thecategoryistheconceptualcontinuumwhichwasdescribedin
section2.2.Sinceitisacontinuum,intheoryitsvaluesareinfinite.Forthisstudy,
however,thevaluesaretheselectedconceptualexemplars,andtheseare
representedineachlanguagebythelexemesthatencodethoseconcepts.As
describedinthepreviousparagraph,thecontextsforcomparingthesevaluesare
20
thepropositionalactfunctions.Themarkednessasymmetriesamongtheconceptual
valuesareexpectedtobedifferentforeachpropositionalactfunction,sincea
differentsubsetofconceptsisprototypicalineachpropositionalactfunction.
2.3.3. Motivationsfortypologicalmarkedness
Typologicalmarkednesspatternsaremotivatedbybothtokenfrequency
(Greenberg1966;Bybee1985;Croft2003)andthetug-of-warbetweeneconomy
andiconicity(Croft2003:101-2).4Thestructureoflanguagerepresentsthe
structureoftheworldashumansexperienceit(iconicity).Ontheotherhand,
limitationsontimeandresourcesinhumancommunicationmotivatethe
minimizationoflanguagestructure(economy).Frequencyprovidestheasymmetry
onwhichtheseopposingforcescanact.Givenacategorywithtwovaluesdiffering
infrequency,economycanbemaximizedwhilesimultaneouslyretaininga
distinctionthatisiconicofthedistinctionintheworld:themorefrequentvaluecan
bezero-coded,whilethelessfrequentvalueremainsovertly-coded.Thisisprecisely
thepatternthatisfoundformanycategoriesinmanylanguages(butnottheonly
oneofcourse;inmanyinstances,bothorneitherofthevaluesareexpressed
overtly).Inflectionalpotentialcanbeexplainedinthesameway.Throughcrosscuttinginflectionalcapabilities,morefrequentvaluesdisplayversatilitythatis
representativeoftheworld.Thesamecross-cuttinginflectionalcapabilitiesareless
usefulforinfrequentvalues,sotheyarelostorfailtocrystallizeinthegrammar.
4Thediscussionhereofthemotivationsfortypologicalmarkednessisacursory
one.Thereaderunfamiliarwiththisliteratureisreferredtotheworkscitedfora
moredetailedaccount.
21
Theseideasaresummarizednicelyintheoft-quotedmantra,“grammarsdobest
whatspeakersdomost”(DuBois1985:363).
Thesameprinciplesareatworkshapingpartsofspeechsystemsdespitethe
countlesscomplexitiesandinterveningfactorsthatexistwithinsuchabroad
characterizationoflanguagestructure.Certainconcepts—basedontheirsemantic
make-up—lendthemselvestouseinparticulardiscoursefunctionsasadirect
reflectionofhowhumansexperiencetheworld.Becauseoftheirusefulness,these
conceptsareusedmorefrequentlyincertainpropositionalactfunctionsthanothers.
Iconicandeconomicmotivationsturnthisasymmetryinfrequencyintoan
asymmetryinform.
Nowthatitissufficientlyclearwhatismeantbytypologicalmarkedness,I
mustreiteratethatmarkednessasymmetriesarethevariationuponwhichthe
multidimensionalscalinganalysisisbased.Noteverydifferenceinformqualifiesas
amarkednessasymmetry.Considerthefollowinghypotheticalexample:onelexical
classofalanguagerequiresaparticularderivationalmonomorphemicsuffixin
reference,whileanotherclassrequiresadifferentmonomorphemicsuffixin
reference.Therelevantcriterionhereisstructuralcoding,butthesetwo
constructionshavethesamenumberofmorphemes.Inmarkednessterms,theyare
equal.Therearemanylinguisticanalysesforwhichanydifferenceinformis
significant,butonlymarkednessasymmetriesarerelevantforthisstudy.
22
2.4. Sourcesoftheprototypestructures
Theprototypestructuresofpartsofspeechemergefrommarkedness
asymmetrieswithinandacrosslanguages.
Themorphosyntacticdistinctionsmadewithinaparticularlanguageserveto
divideuplexemesintoclassesandsubclasses.Foralllanguagesinthisstudy,
morphosyntacticevidencewasfoundtomotivateatleastabasicthree-way
distinctionfortheencodingofobjects,properties,andactions.Bothstructural
codingandinflectionalpotentialplayasignificantroleinhowthesebroadsemantic
classesarerealizedineachofthethreepropositionalactfunctionsofreference,
modification,andpredication.Yet,thebasicdistinctionsmadeinjustonelanguage
arenotenoughtofullyillustrateprototypestructures.Sinceeachlexemeis
evaluatedforstructuralcodinginthreepropositionalactfunctions,thereisthe
possibilityforsomestaggeringofcategorizationlinesacrosstheseenvironments.
However,thedistinctionsthatformlexicalclassesandsubclassesinaparticular
languageareoftenfairlypersistentacrosspropositionalactfunctions.Thatis,
NounsofalanguagepatternlikeotherNounsinreference,andtheyalsopatternlike
otherNounsinmodification.ItislessfrequentthattheclassofNounsthatdisplay
particularmorphosyntacticcharacteristicsinreferenceissignificantlydifferent
fromanotherclassofNounsthatdisplayparticularmorphosyntacticcharacteristics
inmodification.
However,inflectionalpotentialplaysanimportantroleinaddingtothe
markednessstructurewithinaparticularlanguage.Evenasmorphosyntactic
evidenceisfoundtomotivatebroadlexicalclasseswithinalanguage
23
(correspondingroughlytoobjects,properties,andactions)inflectionalpotential
oftenprovidesfurtherdelineationswithineachoftheseclasses.Moreprototypical
membersofeachoftheseclassescanexhibitinflectionalcapabilitiesthatdistinguish
themfromlessprototypicalmembers.Unlikethebroadstructuralcoding
distinctionsthatarereinforcedinmorethanonepropositionalactfunction,these
inflectionalpotentialasymmetriesareoftenspecifictoaparticularpropositionalact
functionanditsrelevantcross-cuttinginflectionalcategories.Thus,evenwithina
singlelanguage,majorandminormarkednessdistinctionscanbeobserved.Even
still,fullprototypestructuresarenotreadilyapparentuntilmultiplelanguagesare
considered.
Whendatafrommanylanguagesarecompiled,thegradienceofthe
prototypestructuresemerges.Languagesmakedifferentdecisionsonwhereto
drawthelinesbetweenbothbroadlexicalclassesandsmallersubclasses.Thereisa
setoffunctionalpressuresthatareatworkinalllanguages,andthesefunctional
pressuresmotivatesimilaritiesintheirlexicalclassifications.Yetwiththousandsof
lexemes(oreventheforty-nineincludedinthisstudy),notwolanguageswillcome
topreciselythesamelexicalclassifications.Languagesmoreoftenalignintheir
classificationofsomelexemes,andtheseformtheheartsoftheprototypes;
languageslessoftenalignintheirclassificationofotherlexemes,andtheseformthe
peripheriesoftheprototypes.Itistheaccumulationofalltheselanguage-specific
decisionsfrommanydifferentlanguagesthatresultsintherichprototypestructures
illustratedinthisthesis.
24
2.5. Cuttinguptheconceptualspace
2.5.1. Semanticmaps
Animportanttooldevelopedinlinguisticsforrepresentingcross-linguistic
regularitiesinsemanticstructureisthesemanticmapmodel,exemplifiedinFigure
1.ItcametoprominencethroughearlyworkbyAnderson(1974,1982,1986,1987),
andhassincebeenusedbyvariousscholarstorepresentdatafromawiderangeof
linguisticdomains(e.g.,Croft,Shyldkrot&Kemmer1987;Kemmer1993;Stassen
1997;Haspelmath1997a,1997b,2003;vanderAuwera&Plungian1998;Croft
2003).FollowingCroft(2001:93),Iwillusetheterm‘conceptualspace’forthe
language-universalconceptualstructureand‘semanticmap’forthelanguageparticularsemanticstructurethatcanbe‘mapped’ontotheconceptualspace.The
strengthsofaconceptualspacelieinitsabilitytocapturesimilaritiesacrossmany
languageswithoutassuminguniversallanguagecategoriesandtoillustratethose
relationshipsbeyondasimplelinearstructure(Croft2001;Haspelmath2003).
Whilesomeapplicationsofthesemanticmapmodelclaimonlyacharacterizationof
theshapeofthedata,conceptualspace—asitsnameimplies—likelyreflectsa
universalconceptualstructureinthemindsofhumanbeings(Croft2001:105,
2003:138-9).
Therelationshipbetweenconceptualspaceandmarkednesspatterns
realizedinstructuralcodingandbehavioralpotentialhasalsobeenexplicitly
framed(Croft2003:140-2).Thiswouldsuggestthatthesemanticmapmodelcould
beappliedtothepartsofspeechdatapresentedhere.However,thesemanticmap
25
modelfacessomeinherentchallenges.First,buildingaconceptualspaceisnoteasily
tractablewithlargeamountsofdata.Second,thesemanticmapmodelisunableto
dealwithexceptions.Currentresearchintypologyhasincreasinglycometo
appreciatetheprevalenceandsignificanceofstatisticaluniversals,sotheabilityto
dealwith‘messy’dataisquicklybecominganessentialrequirementoftypological
models.Third,thesemanticmapmodelisnotmathematicallyformalized.Itsnodes
andconnectionsfailtorepresentthedegreeofsimilaritybetweenrelatedconcepts.
Theexistenceofaconnectionbetweentwoconceptsiscapturedinaconceptual
space,butnotthestrengthofthatconnection.Fortunately,thereisa
mathematically-formalizedalternativetothesemanticmapmodelwhichhasbeen
adaptedforanddemonstratedonlinguisticdata.
2.5.2. Multidimensionalscalinganalysis
Multidimensionalscaling(MDS)ismultivariatemethodthatdirectlymodels
similarityindatabydistanceinaspatialmodel.Ithasonlyrecentlybeenadopted
fromrelateddisciplinesforuseingrammaticalanalysis(Croft&Poole2008;further
backgroundonMDScanbefoundinPoole2005:ch.1).MDSmodelshaveseveral
advantagesoversemanticmapmodels.MDSisamathematicallyformalized
approachthatcapturesnotonlythecategoricalrelationshipsamongdatapoints,but
alsotheirdegreesofdissimilarity.Infact,MDSdeliversatrueEuclideanmodel.This
isanadvantageofMDSoveralternativemethodsfordiscoveringstructurein
multivariatedatasets,suchasfactoranalysisandprincipalcomponentsanalysis,
26
whichonlyattempttocapturemostofthevariationinthedata(foramoredetailed
comparisonoftheseapproaches,seeCroft&Poole2008:12-13;Baayen2008:ch.5).
NotonlycanMDSbeappliedtolargedatasets,themodelactuallyimproves
withtheadditionofdata(Croft&Poole2008:31-2).Thedataonpartsofspeech
corroboratesthisclaim.Aswasmentionedabove,theinclusionofelevenlanguages
andnearlyfiftylexemesforeachlanguageturnedouttobejustenoughdatato
producerecognizableprototypestructuresandillustratetheirinternalstructures.
Thecodeddataforthisstudycomprisea49X169matrix.Bycomparison,
Haspelmath’s(2003)pronoundata(asanalyzedbyCroft&Poole[2008])forma9X
139matrixandDahl’s(1985)tenseandaspectdataforma250X1107matrix.
Finally,MDScanhandleexceptionsinthedata—thatis,itmeasuresthefitofthe
modeltothedata.IturnnowtoabriefdescriptionoftheMDSspatialmodelthat
willbeimportantforinterpretingtheresultsfromthepartsofspeechdata.
AnMDSspatialmodelconsistsofanarrangementofdatapointsandlinear
cuttinglines.Eachcuttinglinesignifiesadiscretebinarycategorizationofthedata,
inthiscaseasinglegrammaticaldistinctionfromalanguage.Thedatapoints
representtheconceptualtargetsusedinthisstudy.Asinglecuttinglinewilldivide
someportionofthedatapointsfromtherest.Thepointsononesideofthislineare
allthelexemesfromaparticularlanguagethatassumeamarkedforminaparticular
propositionalactfunctions,whilethepointsontheothersideareallthelexemes
thatassumetheunmarkedform.Itistheaccumulationofallthesecuttinglinesand
theirdiscretecategorizationsthatforcethedatapointsintoaparticularspatial
arrangementinthemodel.Specifically,thecuttinglinesformpolytopesthatcontain
27
theideallocationforeachdatapoint,butadatapointcanbeanywherewithinthat
polytope.Moredataresultinmorecuttinglines,andmorecuttinglinesresultin
moreaccuratepolytopes.Iftwopointsarecloseinproximityintheanalysis,itis
becausetheyfallonthesamesideofacuttinglinemoreoftenthannot.Iftwopoints
areverydistant,itisbecausetheyfallonoppositesidesofacuttinglinemoreoften
thannot.Inthisway,theaccumulationofbinarycategorizations(cuttinglines)
resultsinsimilarity(ordissimilarity)measuresamongallthedatapoints.Forparts
ofspeech,thistoolprovidesamorenuancedillustrationofcross-linguisticpatterns.
Likethesemanticmapmodel,anMDSanalysisoflinguisticdatais
hypothesizedtocapturemorethanjustpatternsinthedata.Akeydistinctionis
madebetweenthelanguage-andconstruction-specificnatureofthecuttinglines
andtheuniversalnatureoftheresultingconceptualspace.Thisconceptualspace
modeledbyMDSishypothesizedtobethesameforallspeakers.AccordingtoCroft
&Poole,“therelativepositionanddistanceofpointsinthespatialmodelrepresenta
conceptualorganization,presumablytheproductofhumancognitionand
interactionwiththeenvironment,thatconstrainsthestructureofgrammar”(2008:
33).Itcanthenbeinferredthatthesemanticorfunctionalcategoriesreflectedinthe
structureofthisconceptualspacearerelevanttogrammar.Inotherwords,the
dimensionsofanMDSanalysisaremeaningful,andtheyallowforatheoretical
interpretation.
ThespaceintheMDSanalysisofpartsofspeechcouldplausiblyrepresent
“conceptualdiscreteness”(Croft&Poole2008:20-1).However,basedonthe
complexityofthedataandthetheoreticallyunlimitednumberofpossiblelexemes
28
acrosslanguages,itismorelikelythatthespacerepresentsacontinuumintowhich
morelexemescouldfallshouldtheybeincludedintheanalysis.Croft&Poole(2008:
21)writethatwiththeaccumulationofmoredata,“whatatfirstappearstobea
discreteconceptualspaceisrevealedtobeamorecontinuousstructureina
conceptuallymeaningfulspatialrepresentation.”
Thespatialmodelisconstructedbasedonboundariesratherthanprototypes
(Croft&Poole2008:11),andthishasimplicationsfortheoreticalinterpretation.
Prototypestructures—centersofsimilaritygravityaroundwhichpointscluster—
mayshowupinanMDSanalysis,buttheyareanindirectproductofaccumulated
dissimilarities.Therefore,mysubsequentdiscussionsofprototypestructuresinthe
analysisofpartsofspeechdatashouldbeunderstoodinthislight.Thisfitsnicely
withthelargerconceptionoflanguageuniversalsasindirectconstraintson
grammaticalvariationratherthanuniversallinguisticcategories(Croft&Poole
2008:32).Thesemanticcontinuumfromobjecttopropertytoactionconcepts
statisticallyconstrainsthepossibilitiesforlexicalcategorizationwithinalanguage,
eventhoughnotwolanguageschooseexactlythesamecategoriesandboundaries.
29
3. Dataandmethodology
3.1. Selectionofthelanguagesample
3.1.1. Geneticandgeographicdiversity
Figure2.Geographicdistributionofthelanguagesample
Forthisstudy,datawascollectedfromelevengeneticallyandgeographically
diverselanguages.Asconcernsgeneticrelatedness,onlylanguagefamiliesthathave
beenthoroughlydemonstratedandacceptedbyamajorityofthelinguistic
communityareconsideredhere.Accordingtothisstandard,notwolanguagesused
inthisstudybelongtothesamelanguagefamily.However,morecontroversial
claimsaboutlargerlanguagegroupings,suchasAmerind(Greenberg1960,1987;
Ruhlen1991),havethepotentialtosubsumemorethanoneoftheselanguages.
Geographically,threelanguageswereselectedfromeachofthreeregions—the
30
Americas,Africa,andAustralia/Oceania—andtwofromEurasia.Withineachregion
geographicdiversitywaspreferred,withonenoteworthyexception:theinclusionof
bothMali(Baining)fromEastNewBritainandToqabaqitafromtheSolomon
Islands.Eventhoughtheyaregeneticallyunrelated,botharespokenonislandsjust
totheeastofNewGuinea.Ultimately,thecombinationofgeneticandgeographic
diversityyieldsafairlybalancedtypologicalsurvey.
Table6.Summarydataforthelanguagesusedinthisstudy(geneticclassificationand
populationnumbersarefromEthnologue)
Region
Africa
Americas
Australia/Oceania
Eurasia
Language
Kanuri
Khwe
Kisi
Creek(Muskogee)
K’ichee’
Quechua(Huánuco)
Jingulu
Mali(Baining)
Toqabaqita
English
Ingush
Classification
Nilo-Saharan
Khoisan
Niger-Congo
Muskogean
Mayan
Quechuan
Australian
EastNewBritain
Austronesian
Indo-European
NorthCaucasian
L1Speakers
3,760,500
6,790
10,200
4,000
2,330,000
40,000
52
2,200
12,600
335,148,868
322,900
Admittedly,theavailabilityofdetailedreferencematerialswasaprimary
factorintheselectionoftheselanguages.Formostofthelanguagesinthisstudy,
descriptivegrammarsandtwo-waydictionarieswithEnglishwererequiredto
collectthenecessarygrammaticalandlexicaldata.Manyofthesewere
recommendationsfromexperiencedtypologists,andafewlanguagesoriginally
includedwerereplacedduetotheinsufficientnatureoftheirreferencematerials.
Typologicaldiversitywasconsideredintheselectionoflanguages,butnotall
typologicalinformationwasexpectedtoberelevant.Forexample,thereisno
expectedcorrelationbetweenwordorderandpartsofspeechstrategies.
31
3.1.2. Diversityinpartsofspeechstrategies
Anotherformofdiversitythatisimportantforthisparticularstudyisthatof
partsofspeechstrategies.Bythis,Iamreferringtoboththeclaimsmadeofsome
languagesthattheydonothaveallthreebasicpartsofspeech,aswellthe
generalizationsmadeaboutotherlanguagesbasedonperceivedsimilarities
betweentwoofthethreemajorpartsofspeech.Languages“withoutadjectives”are
themostcommonexampleofthefirsttype.Additionally,therearelanguagesfor
whichithasbeensuggestedthattheNoun/Verbdistinctiondoesnotexist.The
secondtypeincludeslanguageswith“VerbalAdjectives”or“AdjectivalNouns”(see
section2.2.2).ThegeneralizationhereisthatthelexicalclassofAdjectivesina
particularlanguagesharesasignificantamountofmorphosyntacticpropertieswith
eitherNounsorVerbs,insomecasestotheextentthattheymightbeconsidered
onelargelexicalclasswithtwosubclasses.Bothtypesarerepresentedinthisstudy.
Anothercross-linguisticvariableisthesizeoftheAdjectiveclass(also
discussedin2.2.2).Again,thelanguagesusedinthisstudycovertherangeof
inventorysizes,fromalanguagewithone‘true’Adjectivetootherswithverylarge
Adjectiveclasses.
Itwouldbedifficulttogroupthelanguagesofmystudydefinitivelyintothe
typesdescribedabove.Whileseveralofthegrammarauthorsfortheselanguages
makesuchclaims,thestrengthsoftheclaimsvary,asdoestheamountofevidence
thatisprovidedbytheauthorstosupporttheirclaims.Toillustratethediversityof
thelanguagesampleintermsofpartsofspeechstrategies,Ihaveincludedrelevant
32
excerptsfromthelanguageresourcesinTable7.However,itcannotbeunderstated
thatmarkednessasymmetriesofatleastonetypewerefoundtodistinguishall
threesemanticclasses(objects,properties,andactions)ineverylanguageinthe
study.Thatis,therewasnolanguageforwhichIfailedtofindmorphosyntactic
evidencetodistinguishatleastthreebasicpartsofspeechfromeachother.
Table7.Selectedinsightsintothenatureofpartsofspeechfromtheauthorsofthe
referencematerials
Language
Kanuri
PartsofSpeechDescription
"Wordsthattranslateintootherlanguagesasadjectives…havenoovert
phonological,morphologicalorsyntacticcharacteristicsthatdifferfromthesame
characteristicsofwordsthattranslateintootherlanguagesasnouns."(Hutchison
1981:35)
Khwe
"Khwedoesnothaveacoherent,properwordclassofadjectives…Itformally
distinguishesbetweenverbaladjectives,adjectivesderivedfromnouns,adjectives
relatedtopronouns,andnumerals”(Kilian-Hatz2008:195)
Kisi
"Adjectivesareaneasilydefinedclassconsistingofwordsattributiveinmeaning
andshowingagreementwithnounstheymodify."(Childs1995:151)
Creek
"StemsinCreekcanbedividedintoseveralclassesbasedontheirgrammatical
(Muskogee)
behavior"(Martin2011:29)
Quechua
"Thereisinsufficientevidenceofastrictlymorpho-syntacticnatureforconsidering
(Huánuco)
thatnounsandadjectivesformdistinctlexicalclasses."(Weber1989:9)
Jingulu
"Australianlanguagesoftendonotshowanymorphosyntacticcontrastbetween
nounsandadjectives…InJingulu,however,thereappeartobesomereasonsfor
consideringnounsandadjectivestobeatleastpartiallydistinctpartsofspeech."
(Pensalfini2003:57)
Mali(Baining) "Itcanbedifficulttodistinguishadjectivesfromverbssinceanadjectivemayhead
anintransitivepredicate."(Stebbins2011:95)
Toqabaqita
Theclassofadjectivesconsistsofonemember(Lichtenberk2008b:52,230)
Ingush
Ingushhasthreemajorclassesofwords:nouns,verbsandmodifiers(Nichols2011:
113)
3.2. Datasources
Threedifferentmethodswereusedinthecollectionofdatafromeleven
languages.Fornineoftheelevenlanguages,datawascollectedfromgrammarand
dictionaryreferences.Asmentionedabove,thequalityofreferencematerialswas
importantintheselectionoflanguagesforthestudy.Evenso,challengesarosewith
thismethodofdatacollection,andtheyarediscussedlaterinthispaper.Asanative
33
speaker,self-elicitationandpersonalgrammaticalityjudgmentswereusedfor
English.
TheK’ichee’Mayandatainthisstudywerecollecteduniquelythrough
elicitation,soIdescribethemethodshere.MuchoftheelicitationwasfromJames
Mondloch,ProfessorofK’ichee’attheUniversityofNewMexico.Forcertain
constructions,hedeferredtohiswife,MariaMondloch,whoisanativespeakerof
thelanguage.
Themethodsofelicitationevolvedthroughoutthecollectionofthedata.
Beforeanyelicitation,abriefoverviewofthisstudywaspresentedtoDr.Mondloch.
Itwasexplainedthattheanalysiswasofparticularlexemesandhowtheselexemes
areencodedineachofthetargetedpropositionalactfunctions.Originally,example
sentenceswerepresentedinEnglishwiththelexemeappearinginallcapitalsinits
unmarkedform:
<<WHITErepresentspurity>>(reference)
<<TheWHITEdogbarked>>(modification)
<<ThecatWHITE>>(predication)
ThegoalofthiselicitationstrategywastoavoidabiastowardEnglishconstructions,
particularlyforthenon-prototypicalpairingsofsemanticclassandpropositionalact
function.Forexample,ifagerundformwasusedintheelicitationpromptforan
actioninreference,itmightbiasthespeakertouseananalogousforminK’ichee’at
theexpenseofotherpossiblemorphosyntacticstrategiesforthiscombination.
Ultimately,thismethodwasinsufficient.Formanycombinationsoflexeme
andnon-prototypicalpropositionalactfunction,thebare(un-derived)formofthe
lexemecreatedconfusionastothemeaningofthesentence.Toclarifytheintended
34
elicitation,thelexemeshadtobegiveninfullygrammatical(derived)forminthe
Englishprompts.ForEnglishpromptsforwhichthereismorethanonepossible
morphosyntacticstrategy,allrelevantstrategiesweregivenintheelicitation.For
example,Englishhasmultiplestrategiesforencodinganactionwordinmodification,
namelyaParticipleformandaRelativeClauseconstruction.Bothofthesewere
giveninEnglishtoalleviatebiasinelicitingthesamecombinationinK’ichee’:
<<TheFIGHTINGmanshouted>>(Participle)
<<ThemanWHOFIGHTS/WHOWASFIGHTINGshouted>>(RelativeClause)
Thisrevisedelicitationstrategywasmuchmoreeffectiveandwasresponsiblefor
mostoftheK’ichee’data.
ThedifficultyoftheelicitationprocessforK’ichee’actuallysupportsthe
theoryofpartsofspeechtowhichthispaperascribes.Onthesurface,frequencycan
explainwhycertaincombinationsofsemanticclassandpropositionalactfunction
aredifficulttoartificiallyconstructfortherespondent.Themoreaparticular
constructionispracticed,themoreeffortlessandnaturalitbecomestoproduce.As
wasdiscussedinsection2.3.3,somecombinationsofsemanticclassand
propositionalactfunctionareveryuncommon.Furthermore,theelicitationofa
particularlexemeinoneoftheseuncommoncombinationsmaybeaskingthe
respondenttoproduceaformofthatlexemeneverproducedbefore.Forexample,
it’sverypossiblethatanativespeakerofK’ichee’hasneverheardorproducedthe
abstractreferentialderivedformofROUNDequivalenttothe(ratherawkward)
Englishround-ness.Therespondentwilllikelybeabletoproducesuchaformbased
onanalogywithotherlexemes,buthesitationand/ordoubtastothegrammaticality
ofthenewconstructionwouldbeunderstandable.Infact,thisreactionwaswell
35
attestedinmyelicitationoftheK’ichee’data.Formanyofthenon-prototypical
combinations,therespondentsmadecommentstotheeffectof,‘Idon’tknowifI’ve
everheardthatbefore.’
3.3. Attestedpatternsofmarkedness
Thepurposeofthissectionistopresentexamplesofasymmetryin
markednessfromthelanguagesinthisstudy.Theseasymmetries—capturedinthe
datacodedformultidimensionalscaling—arewhatdifferentiatetheconceptsinthe
spatialmodel.Theasymmetriesarerealizedinbothstructuralcodingand
inflectionalpotential.Theywillbepresentedforeachpropositionalactfunctionin
turn.Notalltheasymmetriesinmarkednessthatwerefoundinthedataare
presentedhere.Rather,thissectionfeaturesasubsetoftherelevantdatato
illustratetheobservationsofmarkednessthatwerefoundamongtheeleven
languagesofthisstudy.5
3.3.1. Reference
AnexampleofstructuralcodinginreferencecomesfromIngush.Abstract
NounscanbederivedfromAdjectiveswiththesuffix–al.Severalexamplesofthis
derivationareillustratedin(1).
5Manyexamplesareincludedinthispapertoillustrateitsfindings.Allincludean
interlinearmorphemetranslation.Foralltheselanguages,examplesarereproduced
hereusingthesamephonetic,phonemic,ororthographicscriptusedinsource
material.Noattemptwasmadetoconvertthedatatoastandardtranscriptionsuch
astheInternationalPhoneticAlphabet.Tomyknowledge,thisdecisionbearsno
impactonthemorphologicalandsyntacticvariablesthatareatissue.
36
(1) AbstractNounderivationinIngush(Nichols2011:158)
Adjective:
AbstractNoun:
dika‘good’ dikal‘goodness’
d.aza‘heavy’ dazal‘heaviness,weight,value’
q’eana‘elderly’
q’eanal‘oldage’
q’uona‘young’
q’uonal‘youth’
Thisderivationevenworksforthewordeghazal‘anger’fromtheverbeghaz-lu‘get
angry’,eventhoughthereisnocorrespondingadjectiveformfor‘angry’.Therefore,
withregardtostructuralcoding,membersoftheIngushAdjectiveclassaremarked
inreferencerelativetomembersoftheNounclass.
TheinflectionofnumberonSubjectMarkersinToqabaqitaillustratesthe
effectofanimacyonmarkednessofobjectsinreference.Inthethirdperson,higher
animatenounsarealmostalwaysindividuated,anddualandpluralSubjectMarkers
areused.Ontheotherhand,asingularSubjectMarkerisoftenusedforevendual
andpluralmentionsoflesseranimatesandinanimates.Thereareexceptionstothis
ruleinbothdirections.
(2)
AnimacydistinctionsinSubjectMarkernumberagreementinToqabaqita
(Lichtenberk2008:150)
a. botho
baa ki
kera oli
na=mai
pig
that PL
3PL.NFUT
return
PRF=VENT
‘Thepigshavecomeback.’
b. fau
neqe ki
qe
kuluqa
stone
this PL
3SG.NFUT
be.heavy
‘Thesestonesareheavy.’
Furthermore,pronounsarenotoftenusedwhenthereferentisnothuman
(Lichtenberk2008:72).Thesedistinctionsininflectionalpotentialserveto
disambiguatesomeobjectconceptsfromothersinToqabaqita.
37
3.3.2. Modification
InthissectionIpresentsomeexamplesofmarkednessdistinctionsin
modification.AstraightforwardexamplecomesfromKanuri,inwhichNounsare
overtlymarkedwithasuffixwhenusedinmodification.Forexample,the-másuffix
in(3)indicatesarelationshipoftrade,profession,ororigin,amongothers.
(3)
KanuriNounsinmodification(Hutchison1981:196-7)
kâm fə̀ r-má
person
horse-DENOM
‘personowningahorse’
ModificationconstructionsinToqabaqitademonstratehowlabelssuchas
Noun,Adjective,andVerbdonottellthefullstoryofmarkednessdistinctions.
AccordingtoLichtenberk(2008),ToqabaqitahasonlyoneAdjective.Thisanalysisis
basedoninflectionalpotential:thissoleAdjectiveistheonlylexemethathas
differentformsbasedonnumber,animacy,andcount/massnounstatus.Asaresult,
mostpropertywordsinToqabaqitaarecategorizedasVerbs.Yet,thesemantic
distinctionbetweenpropertiesandactionswithinthisclassofVerbsisstillrealized
instructuralcoding.OnlyVerbswith"astativemeaningintheirsemanticrange"
(327)canbeusedasmodifierswithoutanyadditionalstructuralcoding.
(4) ToqabaqitaStativeVerbsinmodification(Lichtenberk2008:328)
toqa maamaelia toqa suukwaqi
toqa leqa
peoplebe.powerful people
be.strong
people
be.good
‘powerfulpeople,strongpeople,goodpeople’
AllotherToqabaqitaVerbscanonlymodifyreferentsinarelativeclauseintroduced
bytheparticlena.Theplacementoftherelativeclausealsoservestodifferentiate
thistypeofmodificationfromthestativeVerbmodifiers.
38
Evenmore,ToqabaqitaNounscanmodifyotherNounsinagenitive
relationshipwithapossessivesuffixorsimplejuxtaposition(Lichtenberk2008b:ch.
8).
(4)
Toqabaqitagenitiveconstruction(Lichtenberk2008b:385)
kaleko
faalu clothes
be.new
‘thechild’snewclothes’
wela
child
Insummary,itispossibleforallToqabaqitaobjectandpropertywordsto
assumeamodificationrolewithoutanyaddedstructuralcoding.Onlythenonstativeactionwordsrequireadditionalstructuralcodingtodothesame.Despitethe
classificationofalmostallpropertywordsasVerbsinToqabaqita,amarkedness
distinctionremainsbetweenproperty-like(stative)Verbsandaction-like(nonstative)Verbs.ThesamelargeVerbclassgivesa“verby”impressionoftheproperty
wordsinToqabaqita,yetitisobjectwordsthatpatternwiththepropertywordsas
unmarkedinmodificationwithregardtotheirstructuralcoding.
Havingdemonstratedhowmarkednessdifferencesmanifestinstructural
coding,Iturnnowtoinflectionalpotentialinmodification.TheAdjectiveclassin
Ingushmakesdistinctionswithinthebroadsemanticclassofpropertywordsbased
ontheirinflectionalpotentialinmodification.Onlytwopropertywords—‘big’and
‘small’—agreeinnumberwiththeIngushNoun.Furthermore,lessthantenpercent
ofAdjectivesagreeingenderwiththeNoun.
(5)
NumberandgenderagreementinIngush(Nichols2011:219-21)
a. v-oaqqa sag
V-big
man
‘oldman’
39
b. b-oaqq-ii nax
B-big-PL people
‘elders’
TheinflectionalcapabilitiesoftheseAdjectivessetthemapartfromothermembers
oftheIngushAdjectiveclass.
3.3.3. Predication
Structuralcodinginpredicationistypicallymanifestedintheformofa
copulaforobjectsand/orproperties.Forsomelanguages,suchasKanuri,nocopula
isnecessary.Actions,objectsandpropertiescanbepredicatedbyjuxtapositionto
thesubject.
(6) PredicationofobjectsandpropertiesinKanuri(Hutchison1981:10-1)
a. Álì
bàrèmà
Ali
farmer
‘Aliisafarmer.’
b. Fə̂ r-nzé kúrà.
horse-3SG.POSS big
‘Hishorseisbig.’
Forotherlanguages,thecopulaisrequired.InMali,thecoordinatorda‘and’
functionsasacopulaforthepredicationofproperties.Thisconstruction
distinguishespropertiesasmoremarkedthanactionsinpredication.
(7)
PredicationofpropertiesinMali(Stebbins2011:49-50)
chēvicha
da
aululka
kēvi=ka
da
aulul=ka
CONTR=M.SG.III
and tall=3SG.M.III
‘Thatguyistall.’
AuniquepatternofmarkednessisfoundinJingulupredicationandit
implicatesstructuralcoding.TheJingulupredicateconsistsofamandatoryLight
40
VerbandanoptionalCoverbalRoot.Theleastmarkedlexemesinpredicationare
theLightVerbsthemselves,sincetheyoccurwithminimalstructuralcoding.The
CoverbalRootsaremoremarkedbecausetheyonlyoccurwithanadditional
morpheme—aLightVerb.
(8)
VerbalelementsofJingulu(Pensalfini2003:59-60)
a. ya-jiyimi bininja
3SG-come
man
‘Themaniscoming.’
b. ngaba-nga-ju karnarinymi
have-1SG-do
spear
‘Ihaveaspear.’
c. ngaba-nga-rriyi karnarinymi
have-1SG-will.go
spear
‘I’lltakeaspear.’
TheuniquewayinwhichMaliVerbsinflectfortenseinpredication
constructionsresultsinseverallevelsofmarkedness.Theinflectionalcapabilityofa
MaliVerbdependsonbothitsclass(A-D)andwhetheritis“StativeIntransitive”or
“ActiveIntransitive”/“Transitive”(Stebbins2011:53-7).TheVerbclassesare
differentiatedbytheirphonologicalformsandtheabilityoftheverbtoinflectfor
tensedirectly:ClassAVerbsencodethreetenses,ClassBandCVerbsencodeonly
thepresent/non-presentdistinction,andClassDVerbsdonotencodeanytense
distinctions.Thestativityandtransitivitycategoriesarerelevantbecausethey
determinewhichConcordialPronounaccompaniestheVerb;StativeIntransitives
requireaClassIIIConcordialPronounwhichdoesnotencodeapast/non-past
distinctionlikeotherConcordialPronounclasses.
41
Sinceboththeabilitytoinflectandthenatureofthatinflection(ablaut,
affixation,orperiphrasis)arerelevantfactorsinmarkedness,MaliVerbsfeaturefive
levelsofmarkedness.
(9)
LevelsofmarkednessintenseinflectionofMaliVerbs,fromleastmarkedto
mostmarked(Stebbins2011)
a. ClassA:Encodepast/present/futureonVerb
b. ClassB+C(Transitive/ActiveIntransitive):Encodepresent/non-present
onVerb,andpast/non-pastonConcordialPronoun
c. ClassB+C(StativeIntransitive):Encodepresent/non-presentonVerb,
butnopast/non-pastdistinctionduetouseofClassIIIConcordial
Pronoun
d. ClassD(Transitive/ActiveIntransitive):Nopresent/non-present
distinctiononVerb,butencodepast/non-pastonConcordialPronoun
e. ClassD(StativeIntransitive):Nopresent/non-presentdistinctionon
Verb,andnopast/non-pastdistinctionduetouseofClassIIIConcordial
Pronoun
ThethirdlevelofmarkednessfeaturingClassesBandCStativeIntransitiveVerbsis
notrepresentedbyanyofthelexemesinthisstudy,buttheotherfourlevelsare
attested.Table8mapstheselevelsontotheintersectionofVerbClassand
transitivity/stativity.
Table8.TensedistinctionsofMaliVerbsaccordingtoVerbClass,transitivity,and
stativity(basedondataanddescriptioninStebbins2011)
Transitive
ActiveIntransitive
StativeIntransitive
ClassA
PST/PRS/FUT
ClassB
PST/PRS/FUT(partiallyperiphrastic)
PRS/NPRS
ClassC
ClassD
PST/NPST
NoTenseDistinctions
Inflectionalpotentialalsoyieldsmarkednessdistinctionsinpredicationin
Creek.AspectandotherdistinctionsaremadeontheCreekVerbviaroot
42
alternations(“grades”)andsuffixes.Creekhasaprimarydistinctionbetween
temporaryevents(Non-Duratives)andstates/prolongedevents(Duratives).All
unmarkedVerbs(includesAdjectives,consideredasubclassofVerbs)inCreekrefer
toanevent,whileVerbswithaDurativesuffixcanbeeithereventiveorstative
(Martin2011:248-51).Manyoftheactionconceptsinthisstudyarespecifically
non-eventive(e.g.,KNOW,WEAR)andwouldrequirethisDurativesuffix—marked
structuralcoding—inordertoaccomplishanon-eventivemeaninginpredication.
Thiswouldindicateamarkednessdistinctionbetweeneventiveandnon-eventive
conceptsinCreek.
However,thereisanotheravailableconstructionforconceptsthatfall
somewherebetweennon-eventiveandprototypicallystative:“Verbsreferringto
dressing,knowledge,perception,andholding…commonlyoccurintheresultative
stativeaspect”(244).TheResultativeStativeiscloseinmeaningtotheDurative,but
therearesubtledifferences;theResultativeStativeisusedforeventsthatare
portrayedasshorterinduration,whiletheDurativeisusedforlongereventsor
thosethataremoreneutralinthisregard(247).TheformoftheResultativeStative
featuresafallingtone,butnosuffixliketheDurativeform.Therefore,theselexemes
areunmarkedinpredicationjustliketheeventiveconcepts.
InTable9,thecellswithboldtextaretheaspectualformsthatmatchthe
conceptualtargetsofthisstudy.Both‘know’and‘wear’representconceptsincluded
inmystudy.Whiletheyarenotconceptsincludedinmystudy,‘ripe’and‘bark’are
usedheretorepresentphysicalpropertiesandcyclicachievements,respectively;
43
thiswasamatterofconvenience,astheCreekformsfortheselexemeswerereadily
available.
Table9.AspectualdistinctionsinCreekVerbs(fromdataanddescriptioninMartin
2011)
Non-Durative
Eventive
(LengthenedGrade)
'lo:kc-ís
'it'sgettingripe'
ki:ll-ís
's/heislearningit'
ResultativeStative
(FallingGrade)
‘wear’
'a:cc-ís
's/heisputtingon'
â:cc-is
's/heiswearing'
‘bark’
'wo:hk-ís
'it'sbarking'
‘ripe’
‘know’
kîll-is
's/heknows'
Durative
(ZeroGrade+
DurativeSuffix)
lókc-i:-s
'it'sripe'
kíll-i:-s
's/heknows'or's/heis
knowledgeable'
ácc-i:-s
's/hehason'or's/he
would/couldwear'
wo:hk-í:-s
'itbarks(allthetime)'
3.4. Codingthedata
Themultidimensionalscalinganalysisusedinthisstudywasaccomplished
withtheMDSOCRprogram,developedbyKeithPooleandmodifiedslightlyby
JasonTimmsforuseonlinguisticdata.ThisprogramfeaturesPoole’sOptimal
Classificationalgorithm,anonparametricbinaryunfoldingalgorithmwhich
progressivelyapproximatesdatapointsandcuttinglinesuntilanoptimal
classificationisreached(Poole2000,2005).
TheMDSanalysisisconstructedfrombinarydata,andeachcolumnofdatais
responsibleforonecuttinglineintheanalysis.Eachcolumnrepresentsonelevelof
markednessattestedforatleastonelexemeinaparticularlanguageand
propositionalactfunction.Theforty-nineconceptualtargets(representedby
lexemesineachlanguage)constitutetherows,andtheyarecodedinthatcolumn
44
foroneoftwovaluesindicatingwhetherornottheyoccuratthatlevelof
markednessinthatlanguageandpropositionalactfunction.
Iwillillustratethiswithanexample.Onecolumnofmydataislabeledwith
thefollowingshorthand:“KI-R-SC-Affix”.Theshorthandcontainsfourcomponents
separatedbydashes.Thefirstcomponentisatwo-lettercodeindicatingthesource
language,inthiscaseKIforKisi.Thesecondcomponentindicatesthepropositional
actfunctioninquestion(R=reference,M=modification,P=predication).Thethird
componentindicateswhetherthemarkednessdistinctioninquestionpertainsto
structuralcoding(SC)orbehavioralpotential(BP).Thefourthcomponentcan
indicatethetypeofstructuralcoding,or—forthecriterionofinflectional
potential—thecategorybeinginflectedfor.Fortheexampleabove,“Affix”isthe
amountofstructuralcodingnecessaryforthelexemetooccurinthatpropositional
actfunction.Thereareafewcolumnlabelsthatincludeafifthcomponent,
necessitatedbydifferencesinhowinflectionalpotentialisaccomplished,eithervia
internalchange,affixation,orperiphrasis(see2.3.2).
Athirdcodingoptioncanindicatewhenthedataisnotavailable.Thismay
resultfromanyofanumberofscenarios.Forsomelanguages,aparticularlexeme
couldnotbefoundtomatchtheconceptualtarget.Thatmeantthelexemewas
assignedthisvalueacrossallthecolumnsforthatlanguage.Inothercases,the
grammarwriterwasexplicitthats/hehadnoinformationregardingacombination
oflexeme(s)andpropositionalactfunction(s).Finally,thereweresomerelevant
constructionsthatwereleftunclearorunmentionedbythereferencematerial.
45
Fortunately,theMDSalgorithmusedherecanadeptlyhandlethesemissingdata
points.
Inmanyinstances,variousinflectionalabilitiespatterntogether.Forexample,
asetofactionwordsmaytakeonseveralinflectionalabilitiesinpredication,suchas
tense,aspect,mood,etc.Ifalltheseinflectionalabilitiesapplytothesamesetof
lexemes,theyaretreatedtogetherinonecolumnofcodeasalevelofmarkedness
(whichatleastsomeotherlexemesdonotdisplay).Thiswasasteptoavoid
redundancy;representingeachinflectioninitsowncolumnwouldhaveresultedin
manyidenticalcuttinglines.
3.5. Dimensionality
OncethedataiscodedandtheMDSanalysiscomplete,thereisstillanother
theoreticaldecisiontomake.TheappropriatenumberofdimensionsforanMDS
analysisisdependentonthepropertiesofthedata.Theanalysisisperformedinone,
two,andthreedimensions,andfitnessstatisticsareprovidedtoindicatethelevelof
fitforeachnumberofdimensions.Complexdataresultinaninverserelationship
betweeninformativenessandgoodnessoffit:asmoredimensionsareincluded,
goodnessoffitincreasesbuttheinformativenessofthemodeldecreases.Thebest
modelisthelowest-dimensionalmodelthatoffersarelativelyhighdegreeoffit,and
forwhicheachadditionaldimensionoffersonlysmallimprovementsinthefit(Borg
andGroenen1997:ch.3&4,citedinCroft&Poole2008:12).Fordatainwhich
languageuniversalsarepresent,alow-dimensionalmodelwithrelativelygood
46
degreeoffitisexpected.Thelimitednumberofdimensionscanthenbeassociated
withasmallsetoffunctionalfactorsthatareresponsibleforthevariation.
47
4. Methodologicalchallenges
Beforeapresentationanddiscussionoftheresultsofthisstudy,itis
importanttobringattentiontosomeofitsmethodologicalandtheoretical
challenges.Whilethesechallengesdonottakeawayfromthesignificanceofthe
results,theyappropriatelyqualifythem.Forfuturestudiesinthisvein,thissection
offerspotentialareasforcriticalthoughtandcreativesolutions.
4.1. Cross-linguisticcomparison
Apersistentchallengeinthediscipline-widetypologicalendeavoristhatof
cross-linguisticcomparison.Infact,thetheoryoflexicalwordclassesmaintainedin
thisstudyrejectstheuniversalityofformalwordclasses.Aswehaveseen,aword
classsuchasAdjectiveinaparticularlanguageisnotequivalentorcomparableto
theAdjectivewordclassinanotherlanguage.Yetthisstudyattemptstorelatethe
formalwordclassdistinctionsmadeineachlanguage—includingvarious
constructionsandgrammaticalcategories—tothedistinctionsmadeintheother
languagesofthestudy.Thesolutionistocomparelexemesonlytootherlexemesin
thesamelanguageandthesamepropositionalactfunction.Alexemeinaparticular
languageisnevercomparedtoalexemewiththesamemeaninginanotherlanguage.
Onlythelexemeswithinalanguagearecomparedtoeachother,andmeasuresof
dissimilarityaresummedcumulativelyacrossconstructions,propositionalact
functions,andlanguages.Sooveralldissimilaritymeasuresamongconceptsarethe
cumulativedissimilaritiesofmanyintra-languageandwithin-propositionalact
functioncomparisons.
48
4.2. Scope
Theprimarylogisticalchallengeofthisstudyisitscombinationofambitious
scopeandattentiontodetail.Collectionofdatainvolvedcombingthrough
thousandsofpagesofgrammarsanddictionariestofindtherelevantinformation
fornearlyfiftylexemes,inthreepropositionalactfunctions(andfortypicallymore
thanonepossibleconstructionineachofthesecombinations),andforeleven
languages.Yetallthesewerenecessary,andtheinterestingresultsofthisstudy
wouldlikelybecompromisedifnotfortheirinclusion.Theapproximatelyfifteen
conceptsforeachbroadsemanticclassarejustenoughtoexploretheinternal
structureofeachprototype.Allthreebroadsemanticclasseshadtobeincluded,
sinceitisthebehaviorofconceptsbetweentheprototypes—relativetothoseator
neartheprototypes—thatrepresentarguablythemostinterestingdatapoints.
4.3. Theoreticalconstraints
4.3.1. Distributionalpotential
Asdiscussedinsection2.3.2,distributionalpotentialisnotcodeddirectlyin
thisstudy.However,itinfluencesothermarkednesspatternsthatareincluded.
4.3.2. Non-prototypicalinflectionalpotential
Itisimportanttoremindthereaderwhatisnotcapturedinthisstudy.In
section2.3.2,Iindicatedthatinflectionalpotentialcanextendfromtheprototypes
49
totheotherbroadsemanticclassesortootherpropositionalactfunctions.Thefirst
oftheseisincludedinthescopeofthisstudy.Thesecond—inflectionalpotential
thatisnotprototypicalforthatpropositionalactfunction—isnotincluded.
Forexample,tenseinflectionisprototypicalforpredication,andCreekisno
exception:itfeaturesafullsetoftenseinflectionsinmainclauses(actionsin
predication).Relativeclauses(actionsinmodification)havethesametense
distinctionsasmainclauses(Martin2011:398),butcomplementclauses(actionsin
reference)havefewertensedistinctions(390).Asimilarphenomenoncanbefound
inToqabaqita.Whenusedinmodification,ToqabaqitaVerbscanretainsome
inflectionalcapabilitiesprototypicalforpredication;yettherearealsosomeverbal
particlesthattheycannottakeinthisconstruction.In(10),theVerbmae‘bedead’is
modifying‘man’andisinflectedforperfectiveaspect.
(10) Toqabaqita(Lichtenberk2008b:331)
kafa qeri, wane mae naqa n=e
comb this man be.dead
PRF
FOC=3SG.NFUT
alu-lu-a
own-RDP-3SG.OBJ
‘Thiscomb,itwasthedeadman(lit.:thenow-deadman)whousedtoownit.’
Thesepatternsmatchwhatisexpectedbytheprototypetheoryofpartsofspeech;
asthecombinationoflexical-semanticclassandpropositionalactfunctionmove
furtherfromprototypicality,markednesswillstaythesameorincrease(inthiscase,
lostinflectionalpotential).However,thesedistinctionsarenotcapturedinthis
studybecausetenseandaspectarenotprototypicalinflectionalcategoriesfor
modificationorreference.
50
4.4. Practicalconstraints
4.4.1. Availabilityofdata
Evenwithexcellentgrammarsandextensivedictionariesatmydisposal,the
availabilityofdatawasachallengethroughoutthestudy.Afewexampleswillsuffice
toillustratethesechallenges.6InKisi,forexample,thegrammarindicatesthatthe
"o"nounclassisunmarkedonthenoun(nosuffixednounclasspronoun)
(Childs:1988:231),yetthedictionaryforKisidoesnotlistthenounclassforeach
nounentry.TheMaligrammar,despiteitsclarityandorganization,doesnotgive
anyinformationabouthowAdjectivesorVerbsareusedinreference.Some
grammarsweremoreexplicitincertaindomains;theKisireferencegrammarleft
outdiscussionofthegenitiveduetoitsintendedfocusonthephonologyand
morphologyofthelanguage.
4.4.2. Generalizabilityanddetail
Thenatureofgrammarsanddictionariesadditionallypresentstheproblem
ofcategorizationandgeneralization.Forthisstudy,itisoftentheexceptionstothe
rulesthatrepresentthemostinterestingdatapoints.Yetgrammarsanddictionaries
mustnecessarilygeneralizeinordertocaptureasmanyimportantfactsabouta
languageaspossiblewithinreasonableconstraintsoftimeandspacesetby
themselves,publishers,andpracticality.Ifoundoccasionalexamplesinmyresearch
6Theseexamplesareinnowayintendedtocriticizetheauthorsofthesource
materials.Onthecontrary,thetypologicalnatureofthisresearchisonlypossible
duetothediligenceoffieldworkersanddescriptivelinguists.Thegrammarsand
dictionariesutilizedwerechosenfortheirhighquality.
51
thatindicateaninconsistencyamonglexemesassignedtothesameclassorcategory.
AninterestingexamplecomesfromK’ichee’.Thesuffixes–iiland–aaloftenmake
AbstractNounsoutofAdjectives,suchasutz-iil‘goodness’fromutz‘good’,nim-aal
‘bigness’fromniim‘big’,andk’a’n-aal‘angriness/anger’fromk’a’n‘angry’.However,
ketekik‘round’yieldsketekik-iil‘spherical’—anAdjectivejustlikeitsstembutwith
anaddedspatialdimensioninitsmeaning.Inthiscase,generalizationsregarding
thesuffixfailtocapturewhatconstitutesasignificantdistinctioninmyanalysis.
Infact,thelanguagesthataremostinterestingforthiskindofstudyarethose
thatmakevariousdistinctionsamongandwithinmajorlexicalclasses.Thosesame
languages,andinparticulartheirvariousgradations,arethemostdifficultforthe
descriptivelinguisttoaccuratelydescribewithoutextremelydetailedattentionto
theuniquepropertiesofindividualwordsandconstructions.
4.4.3. Gradienceingrammaticality
Notsurprisingly,theelicitationofK’ichee’Mayandatabroughtsomeunique
insights.Themostimportantoftheseisthegradientnatureofgrammaticality.AsI
havearguedabove,thebroadsemanticclassesarenotdistinguishedcategorically,
butthelexemesoftheseclassesfallonacontinuumbasedonsemanticprimitives.
ThiscontinuumwasevidentintheelicitationresponsesforK’ichee’.
ThesemanticcontinuumwasperhapsbestexemplifiedintheK’ichee’an
strategiesforpredicatingpropertyandobjectwords.Theresponsesandsubsequent
grammaticalityjudgmentsincludedarangeofcertaintywithmorethanacouple
“awkward”butgrammaticallyacceptableresponses.Muchoftheuncertainty
52
revolvedaroundtheuseofaree,which—inadditiontoitsotherfunctions—serves
essentiallyasacopulaintheseexamples.Generally,thecopulaisnecessaryfor
predicatingNouns,butnotforpredicatingAdjectives.However,theresponsesto
elicitationindicatethatthedistinctionisnotascategoricalasitseems.(11)shows
thepredicationofthreelexemesinK’ichee’.
(11) ObjectandpropertypredicationinK’ichee’Mayan(Mondloch,pers.comm.)
a. <<ThewomanisGOOD>>
utzleixoq
utz
le
ixoq
good
DEM woman
‘Thewomanisgood.’
b. <<Thealligator’shomeisRIVER>>
(aree)ja’ro’chleayiin
(aree) ja’
r-o’ch le
ayiin
(COP)
river 3.POSS-home DEM alligator
‘Thealligator’shomeistheriver.’
c. <<ThelazyoneisWOMAN>>
areeixoqleq’or
aree
ixoq le
q’or
COP
woman
DEM lazy(one)
‘Thelazyoneisthewoman.’
Theexamplesaboveareorderedsuchthatthelexemebeingpredicatedgoesfrom
mostprototypicallyproperty-liketomostprototypicallyobject-like.While(11a)
and(11c)fitthegeneralizationforcopulausegivenabove,thecopulaareeis
optionalin(11b).
Forthemostprototypicalpropertywords,suchasexample(11a)thecopula
isnotrequired.TheseelicitationspresentednoproblemfortheK’ichee’speaker.
However,forlexemesthatfallsomewhatintermediatetothepropertyandobject
prototypes,itbecamemoredifficulttodeterminewhetherthecopulawasnecessary
53
ornot.Movingclosertotheobjectprototype,‘river’in(11b)elicitedagrammatical
sentencebothwithandwithoutthecopula;however,thissentencewithoutthe
copulawasapproachingungrammaticality.Finally,(11c)showsthatthemost
prototypicalobjectwordsrequirethecopulainpredication—itisungrammaticalto
leaveitout.Moreover,thissentencewasstillconsideredtobesomewhatawkward
evenwhenthecopulawasincluded.
Thistypeofgradienceingrammaticalityislikelypresentinsomeforminall
thelanguagesusedinthisstudy.Ifoundonlyacouplementionsofitinthe
resources,however.Asdiscussedabove,theauthorsoflanguageresourcesare
forcedtogeneralizeandcategorizeforthesakeofeconomyandreadability.Asa
result,muchofthiskindofvariationisnotrepresentedinthisstudy.
4.4.4. Variationthatisnotcapturedinthestudyduetolistofconcepts
Insomecases,thelistoflexical-semanticconceptsthatIchoseforthisstudy
resultedintheomissionoflinguisticvariation.Aclearexampleofthiscomesfrom
Toqabaqita’slonelyAdjectiveclass.ThereisonlyoneAdjectiveinToqabaqita—
‘small’—anditisnotaconceptincludedinthisstudy.Thiswordcomesbeforea
Nounandithasthreeformsthatvaryaccordingtoitsnumber,animacy,and
count/massstatus.
(12) Toqabaqita’sonlyAdjective(Lichtenberk2008:230)
kasi biqu faqekwa
small house be.small
‘(very)smallhouse’
54
Unfortunately,theinflectionalpotentialthatmakesthislexemeuniquein
Toqabaqitaisnotrepresentedinmyanalysis.
ToqabaqitaalsofeaturestwobasicclassesoftransitiveVerbs(Lichtenberk
2008:51).Inoneclass,onlythird-persondirectobjectsareindexedontheVerb.In
thesecondclass,alldirectobjectsareindexed.Thelexemesusedinthisstudy
includeonlytransitiveVerbsofthefirstclass,sothisdistinctioninmarkednessis
notcapturedinthedataeither.
4.4.5. Precisioninmeaning
Anotherchallengeinthecollectionofdataistheproliferationofsensesthata
wordcantakeon.Thiswasespeciallyapparentamongactionwordsinmany
languages.Mypredictionsformeaningfulconceptualdifferencesamonglexemes
includedfineaspectualdistinctions,andtheseareoftentranscendedbythesenses
ofasingleword.AcommonexampleistheconceptualtargetWEAR,whichis
supposedtorepresentaninactiveactionofpossession.However,inmanylanguages,
thisconceptisrepresentedbyawordthatalsomeans‘puton’,whichissurelynot
inactive.
Thispolysemyisnotinitselfaproblemforthemethodology.Afterall,ifthe
wordcanbeusedfortheinactivemeaning,thenitmustbeincludedinthestudy.
However,withEnglishusedasameta-language,theprecisemeaningofthewordin
thesourcelanguagecangetlostintranslation.Englishdoesnotmakeallpossible
semanticandgrammaticaldistinctions,soEnglishtranslationsdonotalwaysconvey
thesesubtledistinctionsinthesourcelanguage.IfawordistranslatedtoEnglishas
55
‘sit’,itmightrefertotheinchoativeactionofsittingdownorthestateofbeingina
sittingposition.Tobeclear,thisisnotacriticismofthesourcematerials;itwould
beunrealistictoexpectthislevelofdetailinadictionarythatwascreatedwithso
manyotherneedsandprioritiesinmind.Thisrealityjustmeansthatsome
assumptionsmustbemadealongthewayregardingtheexactmeaningsofcertain
words.Onepossiblesolutionistoelicitdatausingimagesorvideos(e.g.,Levinson&
Meira2003),butthatwasnotrealisticforthescopeandtimeframeofthisproject.
4.5. Linguisticconsiderations
4.5.1. Morphemecounting
Amethodologicalchallengethatcanbetakenforgrantedinanalyzing
differencesinstructuralcodingismorphemecounting.Itcanbedifficultto
determinewhetheranadditionalmorphemeispresentinsomecases.Asimple
examplefromKisiissufficienttoillustratethispoint.Considerthederivational
formsof(13).
(13) LexicalderivationinKisi(Childs2000)
Word:
LexicalClass:
lùsùlló‘beheavy’
Verb
lùsùlló‘weight,heaviness’ Noun
lùsùl-ɛ́ í‘heavy’
Adjective
ThereisnodifferencebetweentheVerbalandNominalforms,whichfeaturea
singleóvowelattheendoftheword.TheAdjectivalform,however,replacesthisó
withatwo-vowel-ɛ́ ísuffix.Forthisstudy,Iacceptthemorphologicalanalyses
56
providedbythegrammarauthors,sincetheyarelikelyinformedbytheirexpertise
inthelinguisticanalysisofthelanguage.
4.5.2. Choosingamonglexicalcandidates
Anothercommonchallengeistheexistenceofmultiplewordsinalanguage
foroneconcept.Iwasabletonarrowdownthepossibilitiesinmostcasesby
favoringwordswiththehighestfrequency(oftenoneoftheoptionsismarkedas
rareorarchaic)andthemostgeneralmeaningforthetargetconcept.Insomecases,
morethanonelexemeforaconceptwasretained.Iftheselexemesexhibited
differentmarkednesspatterns,thatdiversitywasincludedintheanalysisinthe
samewayasthediversityofasinglelexemethatcanbeusedinmultiple
constructions.Forexample,KisihasbothanAdjectivekɛ̀ ndɛ̀ meaning‘good’anda
Verbnàŋɔ̀ ɔ́meaning‘begood’(Childs2000).Sincetheselexemesfallintodifferent
classes,theyexhibitdifferentmarkednesspatterns,andthisdiversityhas
consequencesfortheplacementofthisconceptinthemultidimensionalscaling
analysis.
4.5.3. Compounds
Compoundingandlexicalizationpresentachallengetoanysynchronic
analysis,includingthisone.Thisissueistoobroadtoincludeafulldiscussionhere,
butthechallengecanbeillustratedwithexamplesfromthedata.
InhisgrammarofCreek,JackMartinidentifiesthreedistinctconstructions
onthelexicalizationpathwayfromtheparticiplemodifyinganountothefully
57
lexicalizedcompound.Hewritesthat“wordsdescribingcolor,shape,age,orsize
commonlycombinewiththenounstheymodifyinCreek,asinmaifa-lást-i‘that
blackdog’,butthesearedistinctgrammaticallyfromcompounds”(2011:114).The
threeconstructionsareshownin(14a-c).
(14) Noun-ParticipleLexicalizationinCreek(Martin2011:125)
a. Noun+Participle:
ifá
lást-i:
dog
black-DUR
‘blackdog’
b. Noun+ReducedParticiple(adjoined):
ifa-lást-i
dog-black-(DUR)
‘blackdog’
c. Noun+ReducedParticiple(compounded):
fos-cá:t-i
bird-red-(DUR)
‘cardinal’
Thekeytothisanalysisissemantic:acompoundtypicallyhasafixedreferencetoa
type.ThemostlexicalizedofthesethreeconstructionsinCreekexhibitsthefixed
reference—inthisexample‘cardinal’ratherthananyredbird.
4.5.4. Diachrony
Diachronyalsopresentsachallengetothekindofsynchronicanalysissought
inthisstudyinmuchthesamewayastheothergradientphenomenadescribed
above.Withgradualprocessesoflexicalizationandgrammaticalization,thequestion
arisesastowhichhistoricalcomponentsofawordarestillrecognizabletothe
speaker.InAmericanEnglish,forexample,thewordhappyderiveshistoricallyfrom
theLatinhap(‘chance,fortune’)plusthecommonadjectivizingsuffix–y.However,a
58
contemporaryanalysislikelywouldnottreathappyasamulti-morphemic,andmost
Englishspeakerswouldnotrecognizethisinternalstructureeither.Thequestionof
whatiscognitivelyrealtospeakersisnotalwayseasytodetermine,particularly
fromagrammarordictionary.
Kanuri’stwoverbclassesareaprimaryexampleofthisdiachronicchallenge.
Class2Verbsincludearootnwhichcomesfromalexememeaning‘say,think’,and
thesemanticcomponentsoftheseClass2Verbsderivefromnon-Verballexemes.
Class1Verbsdonotincludethisroot.
(15) VerbalmorphologyinKanuri(Hutchison1981:90-1)
a. Class1:
búkìn
bù-k-ìn
eat-1SG-IPFV
‘Ieat’
b. Class2:
lěngîn
lè-n-k-ìn
go-say/think-1SG-IPFV
‘Igo’
ItisnotclearwhetherthemodernspeakersofKanurirecognizetherootnasa
distinctmorphemeoraspartofalargerrootwiththesemanticcomponent.The
analysisofmarkednessdependsonthisdetail,sinceClass2Verbshaveextra
structuralcodingifthisrootisanalyzedasseparate.Forcasessuchasthese,Idefer
tothemorphologicalanalysisofthegrammar.Ifthegrammarpresentsthese
componentsasseparatemorphemes,thenItreatthemassuch.Althoughgrammar
writersmaybebiasedtowardanatleastpartiallyetymologicalanalysisof
59
morphologybecauseitoffersadeeperlevelofexplanation,Iamnotinapositionto
determinewhetherthisisactuallythecaseandforwhichanalyses.
4.5.5. Constructionalvariation
Languagesoftenpresentmultiplesolutionstothesameproblem.Thisistrue
alsoofconstructionalpossibilitiesforagivenlexemeinaparticularpropositional
actfunction—thereisalltoooftenmorethanoneconstructionavailable.These
possibleconstructionsmaybeequallyavailabletoalllexemesofacertainlexical
classorrestrictedtoacertainsubset.Inthesecases,theconstructionalpossibilities
affordedaparticularlexemearerelevantforthisstudy,especiallywhenone
constructionismoreorlessmarkedthantheother.Theyareincludedwhenthe
informationabouttheirapplicabilityisdescribedinsufficientdetail.Themethodfor
codingdatainthisstudyallowsaparticularlexemetobeanalyzedashavingmore
thanonelevelofmarkedness.Infact,thesecasescanresultinaricheranalysis.Each
lexeme/propositionalactfunctioncombinationwithmorethanoneconstructional
possibility—onemoremarkedandonelessmarked—exhibitsbothsimilarityand
dissimilaritywithalexemethatisalwayslessmarked,andexhibitsbothsimilarity
anddissimilaritywithalexemethatisalwaysmoremarked.Thusjusttwolevelsof
markednesscanyieldthreedifferentlexicalclasseswhenonelexicalclasscanbe
usedinbothconstructions.
Insomecases,morethanoneconstructionispossiblebuttherearestrong
correlationsbetweentheconstructionandanotherpredictivefactor.Anexampleof
thiswaspresentedin(2)forToqabaqita.Higher-animatesubjectsusuallytrigger
60
numberagreementintheSubjectMarker,whileinanimateandlower-animate
subjectsarealmostalwaysusedwiththesingularSubjectMarkerregardlessoftheir
number(Lichtenberk2008:51).Thisisjustageneralization,andthereare
exceptionsforbothgroups.Again,forcaseslikethese,Idefertotheanalysis
providedinthegrammar.Thatis,ifthegeneralizationisstrongenoughthatthe
grammarwriterisabletoidentifyaboundary,thenIincludethatdistinctioninmy
analysis.
Someconstructionalalternativesarebasedonotherfactors,suchasthe
particularrelationshipofthatlexemetotheconstructionoranotherelementtherein.
Forexample,Toqabaqitafeaturesseveralpossibleconstructionsforobjectwordsin
modification.Theserepresentrelationshipssuchasgenitive,possession,
part/whole,andassociation(16a-c).
(16) Noun-NounmodificationconstructionsinToqabaqita(Lichtenberk2008b:
385,379,408)
a. Juxtaposition:
rua
araqi loo
work
mature.man upward
‘God’swork’
b. Personalsuffix:
gwero-na
kuukua
crest-3.PERS
chicken
‘a/thechicken’screst’
c. Associativesuffix:
biqu-i
dudualinga
house-ASSOC
bee
‘bee’snest/beehive’
61
Itisnotcleariftheserelationshipsarerestrictedtoparticularlexemesorsubclasses
ofobjectwords.Thisstudydoesnotaimtocapturemarkednessdifferencesamong
thesekindsofmodifyingrelationships.
4.5.6. Semanticshift
AclassicexampleofsemanticshiftinmydatacanbefoundinQuechua.
Whenpropertywordsareusedinreference,theycanappearwithoutanystructural
coding.However,thereisarecognizableshiftinmeaning.
(17) ObjectsandpropertiesinreferenceinQuechua(Weber1989:35-6)
a. rumi-ta rikaa
stone-ACC
I.see
‘Iseea/thestone.’
b. hatun-ta rikaa
big-ACC I.see
‘Iseea/thebig(one).’
Inthesecondexample,theresultingconstructiondoesnotrefertothepropertyof
‘bigness’,butrathersomeoneorsomethingthatexhibitsthatproperty.Although
thispropertywordappearswithoutanystructuralcoding,ithastakenonanobject
meaninginthisconstruction(Croft1991:72-74,2001:70-5).Thisparticular
semanticshiftforpropertywordsinmodificationisverycommoncrosslinguistically.Anyinstanceofsemanticshiftthatchangesthebroadsemanticclassof
alexeme(e.g.,frompropertytoobject)isconsideredtoomuchsemanticshiftinthis
study.
Anotherexampleofunacceptablesemanticshiftisfoundforactionsin
reference.Someactionconcepts,suchasCOUGHandFIGHT,appearasNounsin
62
severallanguages.AsNouns,however,theyrefertoaproductoftheeventrather
thantheeventitself(Croft,pers.comm.).ForFIGHT—likeDANCE—theproductisthe
structureoftheaction.Foremissionevents,theoftenephemeralproductiswhatis
emitted:sound,light,orsubstance.Theseproductsallrepresentnon-prototypical
objectsratherthanderivedactions.
Forsomelanguages,specificderivationalmorphemesencodethe
relationshipbetweenthestemandthederivedlexeme.Thisisatleastgenerallytrue
forthenominalizationofQuechua’sVerbs.Thesuffix–qisan“Agentive
Substantivizer”,bywhichtheresultingNounreferstotheagentoftheaction
denotedbythesourceVerb(Weber1989:53).Similarly,thesuffix-nacreatesa
NounthatreferstothetoolusedtodotheactiondenotedbythesourceVerb,such
asthederivationof‘broom’fromtheVerbmeaning‘sweep’(50-1).Neitherofthese
arerelevantforthisstudy,sincetheyshiftthereferentfromanactiontoanobject.A
thirdQuechuanominalizeristhesuffix–y,an“InfinitiveSubstantivizer”(51-3).
WhenattachedtosomeVerbs,theresultingNounappearstomaintainitsaction
meaning.However,otherexamplesindicateasignificantsemanticshiftonparwith
theotherQuechuanominalizersdiscussedabove.Stillothersareglossedinsucha
waytobesomewhatambiguousastothedegreeofsemanticshift.
(18)
InfinitiveSubstantivizingsuffixinQuechua(Weber1989:51-3)
a. miku-y
eat-INF
‘food’
b. kanan papel-niki-kuna
tinku-chi-y-chaw
lloqshi-nki alli
now
paper-2.POSS-PL
equal-CAUS-INF-LOC come.out-2 good
‘Nowin(thecircumstanceof)seeingifyourpapermeasuresup,youwill
comeoutgood…’
63
c. aqcha rutu-y ka-n
hair
cut-INF
be-3
‘Thereishair-cuttinggoingon.’
Becauseitisimpossibletodeterminefromtheavailabledatahowthissuffix
interactswitheachlexemeinthisstudy,thisinformationisleftoutoftheanalysis.
Kanurifeaturesasimilarsemanticambiguityforpropertywordsin
reference:
Thewordcìmêforexamplemaybeusedasamodifiermeaning‘red’,orasa
nounmeaning‘theredone’,oreventomean‘redness’,thoughforthelatter
meaningthereisalsothealternativederivednə̀ m-cìmê‘redness’formedthrough
theaffixationoftheabstractnominalprefix…Thewordkúràmeans‘big’,
‘important’asamodifier,andeither‘boss’,‘leader’,‘head’or‘thebigone’,‘the
importantone’,whenusedasanindependenthead…Anyofthewordsthathave
traditionallybeentranslatedasandreferredtoasAdjectivesinKanurican
functionasnounphraseheads,referringbacktoananaphoricallyunderstood
nounphraseantecedent.(Hutchison1981:36)
Thesemanticallyshiftedmeaningfrompropertytoobjectisgeneralizabletoall
membersoftheKanuriAdjectiveclass.However,itisunclearifallofthemcan
renderapropertymeaninginreference,asisdescribedfor‘red’.Sincethelatter
meaningisthetargetofthisstudy,somefactsabouthowKanuri’sAdjectivesare
usedinreferencearesimplymissingfromtheanalysis.
Theexamplespresentedaboveshouldmakeitclearthataprimarychallenge
totheinclusionofderivationalmorphologyinmyanalysisisthevariabilityof
semanticeffectofsomederivationalmorphemes.Combinedwithdifferentlexemes,
thesamemorphemecanoftenderiveresultswithcriticallydifferentlevelsof
semanticshift.Thisvariabilitymakesitverydifficultforthegrammarwriterto
makeusefulgeneralizationswithoutcompromisingsomeofthedetailsthatareso
crucialforthiskindofstudy.
64
Thistopicalsohasimplicationsfortheoverallprototypestructuresofparts
ofspeech.Iwilldemonstrateinlatersectionshowthefullrangeofmarkednessdata
supportsmanyofmyhypothesesaboutwhichsemanticcriteriaaremostinfluential
inshapingtheprototypestructures.Someofthesearesemanticfeaturesthatexert
theirinfluenceattheheartsoftheprototypes.Forexample,theanimacyhierarchy
mostcommonlycreatesdistinctionsininflectionalpotentialwithintheprototypical
combinationofobjectsinreference.Thesederivationalconstructions,however,are
primarilyaffectingstructuralcodinginnon-prototypicalcombinationsofsemantic
classandpropositionalactfunction.Interestingly,thesamesemanticcriteriathat
I’vepredictedtoberelevantattheprototypesandoverallmaybedifferentfromthe
criteriamostrelevanttominordistinctionsinthe“noman’slands”wherethese
derivationalconstructionsareatwork.Thisisbecausesemanticshiftbecomesthe
dominatingfactorinthesenon-prototypicalconstructions.
Whenthesemanticclassdoesnot“match”thepropositionalactfunction,
thereisatug-of-warbetweenthesemanticcontributionofthelexemeandthe
semanticcontributionoftheconstruction.Thisiswhy,forexample,propertywords
inreferencesooftensemanticallyshifttorefertoapersonorthingthatexhibitsthat
property.Thenewlyformedobjectwordfitscomfortablyinreference,asobjects
generallydo.Thenaturalfitandfrequencyofthissemanticallyshiftedderivational
constructionmaycoercealanguageintoderivingadifferentconstructionforthe
less-commonlyusedreferenceofthepropertyitself,andthatalternative
constructionmaybemarkedrelativetothederivationinvolvingsemanticshift.For
thoselanguagesinwhichthederivationalsemanticsareinconsistentandlexically
65
specific,markednesspatternscouldboildowntohowpredictableasemanticshiftis
forthatlexicalconcept.Asdiscussedabove,someactionconceptsrefertoanevent
ofemissionwithanidentifiableproduct.Theproductmaybeanobvioustargetfor
semanticshiftwhenthatlexemeisusedinreference,whileotheractionconcepts
withoutsuchanobvioustargetmayresistasimilarsemanticshift.Thiswouldresult
indifferencesinmarkednessfortheseactionsinreference.Thesemantic
characteristicsthatdeterminewhetheranactionhasanobvioustargetforsemantic
shiftmaybedifferentfromtheaspectualcharacteristicsthatwerehypothesizedto
berelevantforthisstudy.Thiscouldbeinvestigatedwithmoredetailedlanguage
data,particularlyforthoselanguagesinwhichonlysomeactionwordsundergo
semanticshiftwhenusedinreference.
4.5.7. Apparentarbitrariness
Theexamplesfromthedataandthediscussionofchallengestothe
methodologyhaveillustratedthatmarkednessdifferencesariseoutofthe
confluenceofseveralfactors.Historicaldevelopmentsinteractwithfrequency
effectsandprocessesofmorphosyntacticreanalysisandphonologicalfusion.A
comprehensiveunderstandingofthesefactorswouldrequireconsiderationofthe
uniquecircumstancesineachlanguageandintheevolutionofeachconstruction.
Forexample,CreekVerbs(thisclassincludesAdjectives)indexthenumberoftheir
subject(intransitive)orobject(transitive)inthreedistinctways(Martin2011:197).
AsmallsetofcommonVerbs(e.g.,‘sit’,‘come’,‘die’,‘break’)achievethisthrough
suppletion.Alternatively,reduplicationaccomplishesthisinflectionformanystative
66
Verbroots(suchasAdjectives—e.g.,‘white’,‘soft’).StillanothersubsetofVerbs(e.g.,
‘red’)utilizeasuffix.Thesedifferentstrategiesobviouslyreflecttheinfluencesof
frequencyandstativity,butthefullstoryismuchmorecomplex.Howdoes‘red’end
upinadifferentclassthan‘white’?Atleastonthesurface,frequencyandstativitydo
notappeartoanswerthisquestion.
InKanuri,seeminglyminordifferencesinthephonologicalformofaVerb
turnouttohaveamajorimpactonmarkedness(Hutchison1981:157).Verbal
Nouns(basicallyinfinitives)canbederivedfromClass1KanuriVerbsintwo
differentways.ForCVrootsfeaturinganyvowelexcept/i/,atonechange
accomplishesthisderivation(e.g.,tá->ta).Incontrast,thesuffix–oisaddedto
derivetheVerbalNounforalmostallCVrootswith/i/,CVCroots,andpolysyllabic
roots(e.g.,dí->di-o,lad->lad-o).Thissuffixisadditionalstructuralcodinginmy
analysis,andtheresultingVerbalNounformismarkedrelativetothoseVerbal
Nounsderivedfromonlyachangeintone.ThevowelofaKanuriCVrootisnottruly
random,sinceitcomesfromaparticularsetofhistoricalprocessesatworksinceits
inception.Yetitseemstobeafairlytrivialcharacteristicoftherootfromwhicha
significantmarkednessdistinctionhasarisen.
Theseexamplesareillustrativeofthemyriadoffactorsmotivatingthe
prototypestructuresofpartsofspeechandthecomplexrelationshipsamongthese
factors.Thatarecognizablyconstrainedpatternemergesfromthesecomplexitiesis
atestamenttothestrengthanduniversalityofthefunctionalpressuresmotivating
partsofspeech.
67
5. Resultsanddiscussion
Themultidimensionalscalinganalysiswassuccessfulinrepresentingmostof
thevariationinthedatainonlytwoorthreedimensions.
Table10.Fitnessstatisticsinone,two,andthreedimensionsfortheMDSanalysisof
partsofspeech
Dimensions
1
2
3
Classification
0.94030
0.98679
0.99212
APRE
0.79240
0.95406
0.97261
Asdiscussedabove,thebestmodelyieldsahighdegreeoffit,andforwhicheach
additionaldimensionoffersonlysmallimprovementstothefit.Forthepartsof
speechdata,atwo-dimensionalmodelclearlyfitsthisdescription.Theclassification
andespeciallytheaggregateproportionalreductionoferrorshowasignificant
improvementfromonedimensiontotwo.However,fromtwotothreedimensions,
thesenumbersonlyshowsmallimprovement.Thetwo-dimensionalmodel
demonstratesanexcellentfitwhileremainingveryinformative—itcharacterizesa
largedatasetwithverylowdimensionality.
AcommonresultofanMDSanalysisintwodimensionsisahorseshoeshape
(BorgandGroenen1997,citedinCroft&Poole2008:17),andthisshapewasfound
forthepartsofspeechdata.Thedataarearrangedlinearly,andthatlineisbentinto
ahorseshoeshapeallowingstraightcuttinglinestoisolatesmallerstringsofdata
thatfallalongtheline.Thelinearnatureofthisdatacorrespondstothesemantic
continuumfromobjectstopropertiestoactions.Ifsomegrammaticalfunctions
applytoasubsetofthedatapoints(lexemes)inthemiddleofthelinear
arrangement—suchasanAdjectivecategoryinalanguagethatincludesproperties
68
butexcludesobjectsandactions—thelinemustbecurvedtoallowastraightcutting
linetoseparatethosepointsfromtherest.Figure3showsthatthehorseshoeshape
pointsupward;i.e.,theopenendofthehorseshoeisatthetopofthefigure.For
moreevenlydistributeddata,pointswillappearallalongthehorseshoeshapewith
theendsdrawingsomewhatneartoeachother.Becausethepartsofspeechdataare
dominatedbythreeclusterscorrespondingtoNouns,Adjectives,andVerbs,the
endsofthehorseshoeshapedonotcometogetherinthisway.Anopenendstill
facesupward,butthepointsformmoreofanopen,“U”shape.
Thereisanotherimportantcharacteristicofthishorseshoeshapethatwillbe
relevantinthediscussionbelow.Althoughthedatapointsaregenerallyalignedin
theshapeofthehorseshoe,somepointsendupclosertotheinsideofthehorseshoe
andsomeendupalongtheouteredgeofthehorseshoe.Thisisnotanaccident,but
ratheranemergentcharacteristicofthespatialmodel.Thepointsalongtheoutside
ofthehorseshoecanmoreeasilybeisolatedfromtherestbyacuttingline,while
pointsalongtheinsideofthehorseshoecannot.Therefore,ifgrammatical
distinctionsseparateoneparticularconceptualtargetfromtherest,thatpointis
likelytoshowupalongtheoutsideofthehorseshoe.Conceptualtargetsthatare
neverorless-oftenindividuatedinthedatawilllikelyendupalongtheinsideofthe
horseshoe.Inthisway,thepositionofapointalongtheinsideoroutsideofthe
horseshoeistheoreticallysignificant,notjustitspositionalongthecurvedlinefrom
oneendofthehorseshoetotheother.
69
Figure3.MDSanalysisofpartsofspeechwithpointsonly
70
5.1. Distributionoftheprototypes
TheprototypestructuresofpartsofspeechcorrespondingtoNouns,
Adjectives,andVerbsareimmediatelyclearinthespatialmodel.Before
investigatingeachoftheseinmoredetail,Ifirstpresentsomeobservationsthatmay
seembasicbutneverthelesshavetheoreticalimportance.
Figure4.MDSanalysisofpartsofspeechwithcuttinglinesonly
71
Figure5.MDSanalysisofpartsofspeechwithconceptlabelsonly
Therearesomepointsthataredirectlyoverlapping,meaningtherewereno
distinctionsamongtheminthedata.Yetmanyofthedatapointsaredifferentiated
intheanalysis.Whyisthisimportant?Firstofall,thereweremanyconceptual
targetsevenwithineachbroadsemanticclass.Eachofthesebroadclasses—objects,
properties,andactions—includedatleast16targets.Someoftheconceptualtargets
fallintothesamesubclass,suchastheageconceptsYOUNGandOLD.Yetalmostallof
theseconceptualtargetsweredifferentiatedfromeachotherbyamarkedness
72
distinctioninatleastoneoftheelevenlanguages.Languagesexhibitconsiderable
variationregardingwheretheymakemeaningful,grammaticaldistinctionsalong
theobjects-properties-actionssemanticcontinuum.
Despitethedifferentiationofnearlyeverydatapoint,thebroadclassification
oftheseconceptsintoobjects,properties,andactionsissupportedinthespatial
model.Therearegreaterdissimilaritiesacrossthesebroadclassesthanwithineach
one.Everylanguageinthestudymakessignificantmarkednessdistinctions
betweenmostobjectsandmostproperties,andbetweenmostpropertiesandmost
actions.Languagesmakesomedifferentdecisionsintheirclassificationof
conceptualtargetsthatareclosetotheboundariesbetweenthesebroadsemantic
classes,buttheyallmakeatleastonemajordistinctionnearthoseboundaries.In
fact,thisistheprimaryreasonforanalyzingeachofthethreeclustersasseparate
prototypes.
Inowturntotheprototypesthemselves.First,strongnounandverb
prototypestructurescanbeobservedintheupperrightandupperleftregionsof
theanalysis,respectively.Asdiscussedinsection(2.6.2.),thespatialmodelisbased
ondissimilaritydata,soprototypeclustersareanindirectresultofgreaterand
lesserlevelsofdissimilarityamongpoints.Thediscussionhereof“stronger”
prototypesreferstodatapointclusterswhichexhibitlessdissimilarity,resultingin
pointsthatareclosertogetherintheanalysis.Inadditiontothenounandverb
prototypes,aweakeradjectiveprototypeisobservableinthelower,middleregion
oftheanalysis.Thesedatapointsrepresentpropertyconcepts,andwhilethey
73
exhibitmoredissimilarityamongthemthanisfoundintheotherprototypes,they
maintainsomeamountofcohesionaswell.TheseclustersareillustratedinFigure6.
Figure6.MDSanalysisofpartsofspeechwithpointsandprototypes
Verb
Prototype
Noun
Prototype
Adjective
Prototype
Inthenextsections,Iturntoadiscussionoftheinternalstructureofeach
prototype.Thearrangementofpointsinthespatialmodelwillbeevaluatedto
determinewhethertheysubstantiatemypredictionsregardingtherelevant
semanticcharacteristicsforprototypicality.
74
5.2. Nounprototype
Thenounprototypeisprobablythemoststraightforwardinboththespatial
arrangementofitsdatapointsandthesemanticmotivationforthisarrangement.
Figure7offersacloserlookatthedatapoints(representedbytheirlabels)that
constitutethenounprototype.Allthesepointsrepresentobjectconcepts,andthey
nearlyformastraightlineinasteep,positive-slopingdiagonal.Recallthatacurved
lineisnecessaryforcuttinglinestoseparatemedialsegmentsfromtherest.The
objectconceptsaregenerallyalignedonastraightlinebecausethereisoneprimary
functionalmotivationthatdominatestheirarrangement:animacy.
Animacywasresponsibleforseveralmarkednessdistinctionsacrossmore
thanonelanguageinthisstudy.Theseincludedhuman/non-human,higheranimate/lower-animate,andanimate/inanimatedistinctions.Asaresult,the
uppermostpointsinthisclusterofthespatialmodelaretheobjectconceptsthatare
mostanimate.Allfourhumanconceptsarefoundatthisextremity,andtheseare
followedbynon-humananimates—firstDOGandthenBIRD.WOMANwasalso
differentiatedfromBOYeventhoughtheyarebothhumananimateconcepts.For
example,theEnglishablautpluralformwomenislessmarkedthanthesuffixed
pluralformboy-s.
Atthelowerendoftheobjectscluster,STONEandWATERarestretchedoutin
thedirectionoftheadjectiveprototype.LexemesforSTONEpatternedwithproperty
wordsinseverallanguages,whichexplainsitsspatialorientation.WATERisunableto
inflectfornumberinKisiduetoitsstatusasamassnoun,distinguishingitfrom
75
otherobjectconceptsinthisanalysis.Thissuggeststhatunboundedobjectsare
mostdistantfromthenounprototypeamongobjectconcepts.
Figure7.Nounprototype
Betweenthesetwoconceptsonthelowerendandtheanimatesontheupper
end,asignificantnumberofconceptslandedinthesamespotinthespatialmodel.
ThisgroupincludesTREE,SEED,HAT,BED,ARM,FACE,RIVER,andHOUSE.Nomarkedness
distinctionswerefoundtodisambiguatethesetermsinmyanalysis.The
explanationmaybefoundinthesemanticfeaturesthatwereusedtosubclassify
76
theseobjectconceptsinthefirstplace.Theseconceptsrepresentseveralsubclasses:
plants(andplantproducts),artifacts,bodyparts,andplaces.Theyarenotasreadily
rankedintermsofanimacy.Bodyparts(includespartsofhumans,animals,and
plants)areindirectlybasedonanimacybytheobjects’relationshipswithhumansor
otheranimates.Placesaresubclassifiedseparatelyfromartifactsbasedon
magnitude(amongotherthings),especiallyrelativetohowhumansexperience
them.Itispossiblethatdistinctionsinmarkednesswouldbefoundtodistinguish
thesesubclassesandtheirconceptsifmorelanguageswereaddedtothestudy.Even
so,thisstudysuggeststhatplantsandbodypartsaretreatedlikeinanimateswith
regardtopartsofspeech.Distinctionsamongtheseconceptsmightbereservedto
lowerlevelgrammaticalstructures.Forexample,alienableandinalienable
possessionrelationshipsareencodeddifferentlyinmanylanguages,whichcould
disambiguatebodypartsfromartifacts.Thisgrammaticaldistinctionisless
obviouslyrelatedtotheoccurrenceoftheselexemesinaparticularpropositional
actfunction;rather,ithasimplicationsforhowthatobjectconcepttakespartina
possessor-possesseerelationship.
Insummary,theinfluenceofanimacyisrobustinthenounprototypeinthis
analysis.Unliketheotherprototypeclustersdiscussedbelow,theobjectconcepts
arenearlyarrangedinastraightlinereflectingthisimplicationalhierarchy.
Furthermore,someknownconceptualdistinctionssuchasalienable/inalienable
andplant/inanimatemayonlyberelevantforgrammaticalstructuresunrelatedor
indirectlyrelatedtopartsofspeech.
77
5.3. Adjectiveprototype
Themostobviouscharacteristicoftheadjectiveprototypeisthatitisless
cohesivethanitsnounandverbcounterparts.Thesepropertyconceptsforma
relativelylooseclusterthatcoversalargerareaofthespatialmodel.Furthermore,
thisclusterdoesnotformedthecurvedlinethatwemightexpectatthebottomofa
horseshoearrangement.Instead,thepointsarespreadsignificantlytotheinside
andtheoutsideofthehorseshoe.Figure8givesacloserlookatthissectionofthe
spatialmodel.Afewoverlappingconceptsneedtobeidentified,sincetheyare
difficulttoreadevenintheenlargedimage.Theoverlappingconceptsintheupper
rightcornerofthissectionareMALEandFEMALE.Inthecenterofthesection,just
aboveSHORT,aretheconceptsGOODandOLD.Finally,YOUNG,FLAT,andBIGaretheat
leastpartiallyoverlappingconceptsinthelowerrightsection.
Theanalysisofpropertyconceptsintheliteratureasacontinuumfrom
object-liketoaction-likeispartiallysupportedbytheanalysis.Specifically,those
propertyconceptsthathavebeenplacedontheextremesofthiscontinuumshowup
thiswayintheanalysis.ThegenderconceptsMALEandFEMALEwereexpectedtobe
themostobject-likepropertyconceptsbasedonthisliterature,andtheyappearin
theupperrightcornerofthepropertyconceptcluster,closesttothenounprototype.
Aspredicted,thecolorconceptsWHITEandREDappearintheupperrightcorneras
well,justbelowandtotheleftofthegenderconcepts.Ontheaction-likesideofthe
continuum,humanpropensitiesarefoundintheupperleftcornerofthiscluster,
closesttotheverbprototype.Justalittleclosertothecenterofthecluster,physical
78
propertyconceptsSOFTandHEAVYarerightbehind.Theseobservationsinthespatial
modelreinforcetheclaimsintheliterature.
Figure8.Adjectiveprototype
Theeightpropertyconceptsthatareinthemiddleofthecontinuum—
neitherveryobject-likeoraction-like—arenotarrangedsoneatlyinthespatial
model.Someoftheseconceptsareclusteredveryclosetoeachother,andtheredoes
notseemtobeanobviousstructurefrom“nouny”to“verby”withinthem.Thismay
79
resultfromthelimiteddatasetusedinthisstudy.Datafromadditionallanguages
wouldsurelyteaseoutthedetailsattheheartofthisprototypestructure.Acouple
ofobservationswillhavetosufficeforthispaper.First,ROUNDappearsinthelower
leftcornerofthecluster,withasignificantamountofseparationfromtherestofthe
propertyconcepts.Itisnotclearwhatmotivatesthisposition,orwhetherthe
inclusionofadditionallanguagedatawouldperpetuateitsoutlyingpositioninthe
analysis.Second,BIGappearsinalow,relativelycenterpositionintheproperties
cluster,andthereforeontheoutsideofthehorseshoeshape.Thispositionreflects
thestatusofBIG(andothercommonconceptsrepresentingdimension,suchas
LITTLE)asanextremelyprototypicalpropertyconceptwhichenjoysunique
inflectionalcapabilitiesinmodificationinsomelanguages.
WhatarethesemanticmotivationsbehindtheprototypestructurethatI
havejustdescribedforpropertyconcepts?Althoughtheliteratureidentifies“nouny”
and“verby”propertyconcepts,thesemanticmotivationsforthesecharacteristics
arenotalwaysexplicated.Basedonthemarkednessdifferencesobservedinthis
study,Iwilldiscussthesemanticmotivationsthatseemtobeinfluencingthe
structureoftheadjectiveprototypeinthespatialmodel.
TheconceptsMALEandFEMALEappearintheupperrightcornerofthe
adjectiveprototype,closesttothenounprototype.Inseverallanguagesofthisstudy,
theseconceptsareexpressedwithlexemesclassifiedasNouns.Asaresult,these
lexemesareunabletoparticipateinAdjectivalinflections,suchascomparativesand
superlatives.Thismayreflectaconstrualoftheseconceptsaslackinggradability,
andfurtherevidencecomesfromlanguageswhichencodetheseconceptsas
80
Adjectives.InEnglish,maleandfemalecannottakecomparativeandsuperlative
suffixeslikemanyotherpropertyconcepts;instead,theyinflectperiphrastically
withmore/most.SimilarlyinK’ichee’,theseconceptscannotinflectforcomparative
likeotherpropertyconcepts,despitebeingclassifiedasAdjectivesbasedonother
formalcriteria.
Table11.Semanticpropertiesofprototypicalpartsofspeech(Croft2001:87)
Relationality
Stativity
Transitoriness Gradability
Objects
nonrelational state
permanent
nongradable
Properties
relational
state
permanent
gradable
Actions
relational
process
transitory
nongradable
Onthe“verby”sideofthepropertyconceptcontinuum,thesemantic
primitivesthatwereclaimedtodistinguishpropertiesfromactionsaregradability,
stativity,andtransitoriness.Gradabilitydoesnotseemtoplaymuchofarolehere.
Infact,someoftheconceptsthatlandedintheverbprototypeclustercanbe
construedasgradable,suchasWANTandLOVE.Incontrast,theroleofstativityand
transitorinesscanbeseeninthemost“verby”propertyconcepts:thoseofhuman
propensity.Firstofall,HAPPYandANGRYareknownthroughhumanexperiencetobe
transitory.AtleastinEnglish,theycanrefertoanoverallpersonalitycharacteristic,
butmoreprototypicallytheyevokeatemporaryattitudeordemeanor.This
transitorinessofhumanpropensitiesistiedupwiththeirconstrualasaprocess,
sincehumanshavetotransitionintoandbackoutofaparticulartemperament.In
fact,thevariouspossibleconstrualsofanexperienceofhumanangerpresenta
challengetothisstudy.Alexemerecruitedtorepresenttheexperiencemighttarget
theresultingstateortheinchoativeprocess,forexample.Itispreciselythese
81
semanticcharacteristicsinherenttotheexperienceofhumanpropensitythatleadto
itsoccasionally“verby”morphosyntactictreatment.
5.4. Verbprototype
Theactionconceptsformarelativelytightclusterinthespatialmodel,
althoughnotquiteastightasthenounprototype.Also,asisfoundintheadjective
prototype,theactionsconceptsnotonlyfollowthecurvedlineofthehorseshoebut
exhibitvariationtotheinsideandoutsideaswell.Thisisindicativeofamore
complexsetofsemanticmotivationsbehindthemorphosyntacticrealizationof
theseconcepts.Inthelowerleft,theoverlappingconceptsareSITandWEAR.Inthe
lowerright,SEE/LOOKAT,LOVE,andWANTarebunchedtogether.Finally,GIVE,COUGH,
andEATaretheoverlappingconceptsnearthecenterofFigure9.
Asdiscussedin2.2.3,aspectualdistinctionswereexpectedtoplayarolein
theprototypicalityofactionconcepts.Thishypothesiswasconfirmedwithregardto
oneparticulardistinction:stativeconceptsversusdynamicconcepts.Twoparticipantstates(KNOW,WANT,LOVE)andinactiveactions(SEE/LOOKAT,SIT,WEAR)are
stativeconcepts,andtheseareclearlyseparatedfromtherestoftheactionconcepts
inthespatialmodel.Asexpected,theyarefoundinthelowerandlowerrightareas
oftheverbcluster,closertotheadjectiveprototypethantherestoftheaction
concepts.Asdiscussedinsomeexamplesabove,thestative/dynamicdistinctionwas
foundtobesignificantformarkednesspatternsinsomeofthelanguagesinthis
study,andtheresultsareapparentinthemodel.
82
Figure9.Verbprototype
Withinthissubgroupofstativeconcepts,however,thedistinctionbetween
two-participantstatesandinactiveactionsisnotclearinthespatialmodel.Inactive
actionsSITandWEARarefoundtogetherinthelowestpositionintheverbcluster,
butSEE/LOOKAT—alsoaninactiveaction—isbunchedupwiththetwo-participant
states.TheseparationofSITandWEARfromtheotherstativeconceptsmayreflect
theunintentionalinclusionofmoreactivemeaningsinsomeofthelexemeschosen
83
torepresenttheseconcepts.Forsomelanguages,thesamelexemecanmean‘sit’
and‘sitdown’or‘wear’and‘puton’.Thesealternativemeanings—oftendifficultto
disentanglefromthestativemeanings—mightbemotivatingtheselexemesto
patternmorphosyntacticallyinsomewayswithdynamicactionconcepts.
Theremainingactionconceptsarespreadfromthecenterandleftcenter
sectionsoftheclustertowardtheupperright.Thisgenerallyfollowsthecurvedline
oftheexpectedhorseshoeshapeendingatCOOK.Thesemanticmotivationforthe
arrangementofthesedynamicactionconceptsinthemodelislessclear.Durative
processes,cyclicachievements,anddirectedachievementsareallintermingled
togetherinthispartoftheverbprototype.
Thereis,however,atendencysuggestiveofadurative/punctualdistinction.7
Durativeconceptstendtobefoundattheupperandupperrightportionsoftheverb
prototype.ThisgroupingmightincludeCOOK,WAVE,DIE,FIGHT,andBUILD.WAVEwas
chosenforthisstudytorepresentacyclicachievement,butiterativelyconstrued,it
couldtakeonadurativesense.DIEwouldbeaclearexceptiontothedurativetheme.
Punctualconcepts,ontheotherhand,arefoundclusteredinthecenterandleft
centeroftheprototype.TheseincludeCOME,HIT,BREAK,GIVE,COUGH,andEAT.COMEwas
selectedtorepresentadurativeprocess,butanalternativeconstrualforthis
concept—‘arrive’—couldexplainitsplaceamongpunctualconcepts.However,itis
difficulttoconceiveofastrictlypunctualconstrualofEAT,sothisconceptmustbe
consideredanexceptioninthisgroup.
7IamthankfultoBillCroftforbringingthistomyattentioninourdiscussionofthe
resultsoftheMDSanalysis.
84
Ifweacceptthedurative/punctualdistinctionsuggestedinthemodel,why
arethedurativeconceptsfoundattheendofthehorseshoe(upperrightportionof
theactionconceptscluster)whereverbprototypicalityishighest?Ahypothesisof
thisstudywasthatpunctualactions—representedbycyclicachievementsand
directedachievements—wouldbemoreprototypicalamongactionsthandurative
ones.Theanswermaylieinanunexpectedrelationshipbetweenachievementsand
states.Fromaperspectiveofboundednessorcompletion,thesetwoaspectual
classesappeartobeverydifferent.However,thereisevidencethattheyareunited
aspotentialconstrualsofadirectedaspectualcontour(Croft2012:165-71).This
contourcorrespondstooneofBybeeetal.’s(1994)familiesofgrammaticaltenseaspectcategorieswhichincludesperfectandperfectivesenses.Synchronicallyand
diachronically,verbscanalternatebetweenanachievementconstrualand
(resulting)stateconstrual.(Alternatively,durativeconceptsareconstrualsofan
undirectedaspectualcontour,correspondingtoBybeeetal.’sotherfamilyof
grammaticaltense-aspectcategorieswhichincludesimperfective,progressive,
present,andhabitualsenses.)Thissurprisingrelationshipmaybemotivatingthe
contiguityofpunctualandstativeconceptsinthepartsofspeechmodel.
Thespatialmodelhasprovidedvariousinsightsintothenatureoftheverb
prototype,butitdoesnothavetoexplaineveryaspectofthedata.Severalofthe
languagesinthisstudyfeatureimportantmarkednessdistinctionsamongaction
concepts—particularlywithregardtohowtheyarepredicated—thatdonotseemto
resultfromaspectualdistinctions.Forsomelanguagesthesedistinctionsarethe
resultofverbclasses,forotherlanguagesitisduetotheexistenceofsemantically
85
meaningfulauxiliaryverbs.Itisalsopossiblethatindividuallexicalfrequency
manifestsitselfinmorphosyntacticmarkednessenoughtodisrupttheinfluenceof
aspectualprototypicality.Itisinterestingthatthisdoesnotalsohappenwithin
objectconcepts.Forexample,noteverylexemerepresentingahumanconceptis
frequent,yetincertainlanguagesthemorphosyntactic“advantages”suchas
inflectionalpotentialareappliedtoalllexemesrepresentinghumanconcepts.What
differentiatestheactionconceptsfromtheobjectconceptsinthisregard?Itmaybe
thattheconceptualunityofsubclassesintheanimacyhierarchyisgreaterthanthat
ofaspectualsubclasses.Alternatively,thegrammaticalprocessesbywhich
markednesspatternsevolveinobjectsmaybedifferentthatthoseforactions,soit
maybeonlyindirectlyrelatedtothesemanticcharacteristicsthatmotivatethese
subclasses.
5.5. Interpretingthedimensions
Partsofspeechrepresentoneofthemostbasicandpervasivelevelsof
grammaticalorganization,anditwouldbeextremelysurprisingifonlytwoorthree
functionalorsemanticfactorswereshowntoexplainnearlyallofthedata.Rather,
thesedimensionsrepresentdifferentsemanticmotivationsindifferentareasofthe
spatialmodel.Forexample,withinthenounprototypecluster,onecouldarguethat
ananimacydimensionrunsalongasteep,positive-slopingline;highlyanimate
conceptsarehigherandfurthertotheright,whileinanimateconceptsarelowerand
furthertotheleft.However,ananimacyinterpretationofthisdimensionis
86
inappropriateforotherareasofthemodelwhereothersemanticfactorsappearto
bedrivingthedistributionofconcepts.
Themultidimensionalscalinganalysisconfirmsthehypothesisofthisstudy
thatatleastseveralsemanticfactorsarerelevantforthemorphosyntactic
realizationofobjects,properties,andactionsinthreepropositionalactfunctions.
Table12showstheprimarysemanticfactorsbasedonwheretheireffectisfoundin
thesemanticcontinuumfromobjectstopropertiestoactions.Mostofthese
semanticprimitivesarefamiliarfromCroft(2001:87,seealso1991),andtheywere
introducedinTable1.However,theeffectofanimacyinthisanalysisisstrong
enoughtoincludeitwiththeothersemanticfactors.
Table12.Semanticpropertiesmotivatingtheprototypestructuresofpartsofspeech
ACTIONSPROPERTIESOBJECTS
dynamic
stative
transitory
permanent
nongradable
gradable
relational
inanimate
nongradable
non-gradable
nonrelational
animate human
WhileTable12impliesthatallofthesesemanticprimitivesareactiveacross
theentirecontinuumfromobjectstopropertiestoactions,thismaynotbethecase.
Stativityandtransitorinessarecomponentsofthelargerconceptoftime-stability,
andtheyappeartoberelevantacrossthecontinuum.Similarly,relationality
motivatesadistinctionbetweenobjectsandproperties,soitseffectsarenot
confinedtoasingleprototype.However,animacymayberelevantonlyamong
nonrelationalconcepts,effectivelylimitingitsdomaintothenounprototype.Itmay
87
beappropriatetosaythatanimacycontributestotheinternalstructureofthe
prototype,butnottothe(non-discrete)boundarybetweenprototypes.Itisless
clear,butgradabilitymaybesimilarlylimitedinitsscope.Itseffectsareprimarily
foundinthemiddleofthecontinuum—thatis,amongpropertyconcepts—andless
sooneitherend.
Theanalysispresentedhereshowsthathumanscanindeedreducethe
complexityoftheworldintojustafewdimensions,butthatthosedimensionsmay
actuallyrepresentvariousfunctionalorsemanticprinciplessimultaneously.
5.6. Futureresearch
Themostobviousextensionofthisstudywouldbeitsapplicationtomore
languages.Theelevenlanguagesincludedinthisstudyarejustenoughtoillustrate
theprototypestructures.ThiscanbeseeninFigure10,whichshowsspatial
analysesusingdatafromthree,six,nine,andelevenlanguages.Ittakesclosetoa
dozentoteaseapartmostoftheconceptsinthespatialmodel.Doublingortripling
thesamplesizewouldgoalongwayinfurtherelucidatingdissimilaritiesandtheir
semanticmotivations.
Additionally,futureresearchcanimproveonthelistofconceptsincludedin
suchastudy.Ofcourse,withmorefine-grainedconceptualdistinctions,amore
informativemodelispossible.However,economicalconsiderationslimitthe
numberofconceptsthatcanbeincluded,sofutureworkmightinsteadreplace
uninformativeconceptualdistinctionswithonesthatarepredictedtoberelevant
basedontheresultshere.
88
Figure10.MDSanalysisofpartsofspeechforthree,six,nine,andelevenlanguages
(clockwisefromtopleft)
5.7. Experience,conceptualstructure,andlinguisticform
Thisstudyisaninvestigationintohowthesameconceptualideamaybe
encodedgrammaticallyindifferentwaysfromonelanguagetothenext.Thisisthe
sourceofvariationbetweenthepartsofspeechprototypes.Thereis,however,
anothersourceofvariationinpartsofspeechamonglanguages.Thesamereal
89
worldtarget—whetheranobject,property,oraction—canbeconstrueddifferently
acrosslanguages.This,ofcourse,wouldresultindifferentmorphosyntactic
behaviorsforthelexemesrepresentingthesedifferentconstruals.Forexample,two
languagesmayconstruetheexperienceofangerdifferently,withonefocusingon
thetemporarystateofbeingangryandtheotherfocusingontheprocessofchange
fromanon-angrystatetoanangryone.Astudythatstartsataconceptualbaseline
missesthiskindofvariation.Thisthesisaimedtocapturevariationstartingfroma
conceptualbaseline,butaswehaveseen,alternativeconstrualsfossilizedinlexical
polysemyhavemostlikelyintroducedsomeofthisvariationinconstrual.
Therearemanystudiesthathaveaimedtocapturethevariationinconstrual,
perhapsmostnotablythepioneeringworkofthePearStories(Chafe1980).Theuse
ofvideoallowedparticipantsinthestudytogodirectlyfromexperiencetolinguistic
form,withoutapredeterminedsyntacticorconceptualstructure.Forsometargets
inthefilm,thelinguisticresultsaresurprisinglyhomogeneous;forothers,agreat
dealofvariationresulted.Itwouldbeinterestingtoconductastudyonpartsof
speechfromanexperientialbaseline.Thiswouldrequirevideoorpictureelicitation,
andagreatdealoftimeandresourcestocollectthedatafrommanydiverse
languages.Theresultwouldlikelybemorevariationthanisfoundinthisstudy,but
howmuchmore?Wouldthepartsofspeechprototypestructuresemergeinsucha
study,orwouldtheybehiddenbytheconfoundingeffectsofvariationinconstrual?
90
6. Conclusions
Thisthesishassoughttoillustratetheprototypestructuresofpartsofspeech.
Aftercodingmarkednessasymmetriesinelevenlanguages,Iwasabletoapplya
multidimensionalscalinganalysistothedatatocreateatwo-dimensionalspatial
representationthatcapturesalmostallofthevariation.Themodelshowsclearly
threeprototypestructuresrepresentingnouns,adjectives,andverbsthatresult
indirectlyfromconceptualdissimilarities.Thenounandverbprototypeclustersare
stronger,whiletheadjectiveprototypeclusterisweaker.
Inparticular,itistheinteractionofconceptualclassesandsubclasseswith
thethreebasicpropositionalactfunctionsthatyieldmarkednessdifferences.
Languagesexhibitvariationregardingwhichconceptsbelongtowhichlanguagespecificclassesandregardinghowtheseconceptsareencodedmorphosyntactically.
Yetthroughthisvariation,theprototypicalityofobjectsinreference,propertiesin
modification,andactionsinpredicationmotivatethestructuresthatareseenclearly
inthespatialmodelpresentedhere.Itissignificantenoughtoemphasizeagainthat
everylanguageinthisstudywasfoundtoexhibitsomemorphosyntactic
distinctionsbetweenobjects,properties,andactions.Thischaracteristicofthedata
iscriticalinmotivatingaspatialmodelwiththreedistinctclusters,ratherthan
continuousandinseparabledatapointsalongthesemanticcontinuumfromobjects
topropertiestoactions.
Oneofthemostimportantcontributionsofthisstudyistoourunderstanding
ofthesemanticfactorsthatmotivatethepartsofspeechprototypes.Theroleof
severalsemanticfactorsidentifiedintheliteratureweresupportedinthisanalysis,
91
suchasrelationality,gradability,transitoriness,andstativity.Theevidencefortheir
roleisseenbothqualitativelyinmarkednessdistinctionsofparticularlanguages
thatreflecttheirinfluenceandquantitativelyinthearrangementofconceptsinthe
spatialmodel.Animacyhasalsobeendiscussedintheliteratureasshapingformal
distinctionsamonglexemesrepresentingobjectconcepts,butwasnotincludedasa
primarysemanticfactorinpartsofspeechprototypestructures.Theanalysishere
hasshownthatitplaysakeyrole,butalsothatthisrolemaybeconfinedtothe
internalshapeofthenounprototype.Thisopensthedoorforfutureresearchto
explorethedomainofeachsemanticfactor—withinaparticularprototype,shaping
theboundarybetweentwoormoreprototypes,orboth.
Theseresultssupportandillustratetheprototypetheoryofpartsofspeech.
Evenmore,theyareconsistentwithcontemporarytypologicalresearchand
specificallymultidimensionalscalinganalysesthatsupportneitheran“extreme
universalist”noran“extremerelativist”perspectiveonlanguage(Croft&Poole
2008:31-2).Thevariationinpartsofspeechstrategiescannotbeexplainedinterms
ofuniversalcategories,yetthepatternsthatemergeareindicativeofuniversal
functionalpressuresthatconstrainthevariationprobabilistically.Thespatialmodel
ofpartsofspeechdatapresentedhereillustratestheuniversalconceptualstructure
underlyingthemostbasicorganizationofgrammar.
92
LISTOFAPPENDICES
AppendixA.Completeconceptsubclassificationandselectedexemplars.....................94
AppendixB.PartsofspeechdatacodedforMDSanalysis....................................................95
AppendixC.MDSoutputtableforpoints...................................................................................112
AppendixD.MDSoutputtableforcuttinglines......................................................................113
93
AppendixA.Completeconceptsubclassificationandselectedexemplars
Class(/Type)
Humans
Kinship
Animals
Plants/PlantProducts
Artifacts
BodyParts
Places
Material/Substance
Gender
Color
Form
Age
Value
Dimension
PhysicalProperties
HumanPropensity
2-ParticipantStates
InactiveActions
DurativeProcesses
CyclicAchievements
(Semelfactives)
DirectedAchievements
Cognition
Desire
Emotion
Perception
Posture
Spatial/Possession
SocialInteraction
Consumption
Motion
ChangeofState
CreationVerbs
Emission
Contact
BodilyMovement
Existence
ChangeofPossession
ChangeofState
94
Exemplars
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
AppendixB.PartsofspeechdatacodedforMDSanalysis
KH-RSC-0
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-RSCVarStr
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
KH-RBPPGN
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-RBP-0
KH-MSC-0
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
95
KH-MSCVarStr
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-MBPSPRL1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-MBPSPRL2
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
KH-MBP-0
KH-PSC-0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
KH-PSCCop
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-PBPTAM1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
KH-PBPTAM2
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KH-PBP-0
KS-RSC-0
KS-RSC-Aff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
1
6
9
1
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
9
1
1
1
1
1
1
1
1
1
1
1
6
1
9
6
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
96
KS-RBPClass
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
9
6
9
9
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KS-RBPNum
1
1
1
1
1
1
1
1
1
9
1
1
1
1
6
1
9
9
6
6
6
6
6
6
6
6
6
6
9
6
9
9
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KS-RBP-0
KS-MSC-0
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
9
1
9
9
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
1
1
1
6
1
1
1
1
6
1
1
9
1
9
9
6
6
6
6
6
6
6
1
6
1
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
KS-MSCSuff
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
1
1
1
6
1
6
1
1
6
9
9
6
9
9
1
1
1
1
1
1
1
9
1
9
1
1
1
1
1
1
1
KS-PSC-0
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
1
1
1
6
1
6
1
1
6
1
1
6
9
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
KS-PSCCop
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
6
1
1
1
1
9
1
6
6
1
6
6
6
6
9
6
9
6
6
6
6
6
6
6
KS-PBPTAM
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
1
1
1
6
1
6
1
1
6
1
1
6
9
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
KS-PBP-0
JI-RSC-0
JI-RSC-Aff
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
6
1
1
1
1
9
1
6
6
1
6
6
6
6
9
6
9
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
6
6
6
6
6
9
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
1
1
1
1
1
9
1
1
1
1
9
1
1
1
1
1
1
97
JI-RBPNGC
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
JI-RBP-0
JI-MSC-0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
9
6
6
6
6
9
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
JI-MSC-Aff
JI-MJI-MBPBP-0
NGCagr
JI-PSC-0
JI-PSC-Aff
JI-PSC-LV
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
9
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
9
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
9
6
6
1
6
9
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
9
1
1
6
1
9
1
1
1
1
1
1
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
9
1
1
1
1
9
1
1
1
1
1
1
98
JI-PBPTAMabl
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
1
6
9
6
6
6
6
6
6
JI-PBPTAMperi
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
9
1
1
6
1
9
1
1
1
1
1
1
JI-PBP-0
MA-RBPNPArt
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
9
6
6
6
6
9
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
1
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
MA-RBPSpecArt
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
MA-RBPNClass
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
MA-RBP-0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MAM-SCREL
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
6
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MA-MSCREL+Pr
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
1
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
99
MA-MSCPossPr
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
1
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
MAM-BPIntens
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
6
9
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
MAM-BP0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
1
9
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MA-PSC-0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MA-PSCCop
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
MA-PBPConcPr
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
6
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MA-PBP-T1
MA-PBP-T2
MA-PBP-T3
MA-PBP-T4
TO-RSC-0
TO-RSC-Aff
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
6
6
6
6
6
1
1
1
6
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
1
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
100
TO-RBPNum
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
TO-RBPPron
1
1
1
1
6
6
6
6
6
6
6
6
9
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
TO-RBPPLmark
1
1
1
1
1
6
6
6
6
6
6
6
9
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
TO-RBPSubjIndNum
1
1
1
1
1
6
6
6
6
6
6
6
9
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
TO-RBP-0
TO-MSC-0
TO-MSC-Aff
TO-MSCRelMar
TO-PBPTAM
TO-PBP-0
QE-RSC-0
QE-RSC-Aff
QE-MSC-0
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
9
9
9
9
9
9
9
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
101
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
QE-MSCSuff
QE-MBPSPRL
QE-MBP-0
QE-PSC-0
QE-PSCCop
QE-PBPTAM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
102
QE-PBPTAMperi
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
CR-RSC-0
CR-RSC-Aff
CR-RBPNum
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
CR-RBPDim
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
CR-RBP-0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CR-MSCAttach
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
CR-MSC-Aff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
CR-MSCAffLgr
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
103
CR-MBPCMPR
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
CR-MBP-0
CR-PSC-0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CR-PSCDURAff
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
CR-PSCCop
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
CR-PBPTAM
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CR-PBPTAMperi
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
KI-RSC-0
KI-RSC-Aff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
KI-RBPNumSuff
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
104
KI-RBPNumPeri
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
KI-RBPNumVindex
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
9
9
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
KI-RBP-0
KI-MSC-0
KI-MSCGEN
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
KI-MSCREL
KI-MBPCMPR
KI-MBP-0
KI-PSC-0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
KI-PSCPlusNoun
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
105
KI-PSCFOC
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
KI-PBPTAMIndArg
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
KI-PBP-0
EN-RSC-0
EN-RSC-Aff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
1
1
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
6
1
1
6
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
EN-RSCPeri
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-RBPNumAbl
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-RBPNumSuff
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-RBP-0
EN-MSC-0
EN-MSC-Aff
EN-MSCREL
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
1
1
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
106
EN-MBPCMPRAbl
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBPCMPRSuff
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
1
1
1
6
6
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBPCMPRSuff2
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
EN-MBPCMPRPeri
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBPSPRLAbl
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBPSPRLSuff
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
6
6
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBPSPRLSuff2
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-MBP-0
EN-PSC-0
EN-PSCCop
EN-PEN-PSCBPCopArt TAbl
EN-PBPTaff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
6
6
6
6
6
1
6
1
6
1
1
6
6
107
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
1
1
1
1
1
1
6
1
6
1
6
6
1
1
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
EN-PBPTPeri
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
EN-PBPP+NSuff
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EN-PBPP+MPeri
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IN-RSC-0
IN-RSC-Aff
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
1
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
108
IN-RBPCaseNum
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IN-RBP-0
IN-MSC-0
IN-MSC-Aff
IN-MBPCMPR
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
1
6
6
6
6
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
IN-MBPGendAgr
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IN-MBPNumAgr
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IN-MBPCaseAgr
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IN-MBP-0
IN-PSC-0
IN-PSCComp
IN-PSCCop
IN-PBPIter
IN-PBPAux
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
6
1
6
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
6
1
6
6
1
6
109
IN-PBPIndNum
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
1
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
IN-PBPIndGend
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
1
6
1
1
1
1
1
1
6
1
1
1
IN-PBPSppl
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
1
6
1
6
6
6
1
1
6
IN-PBPFullAkt
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
6
1
6
1
1
1
1
1
IN-PBPPartAkt
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
1
6
6
6
6
6
IN-PBPRestrAkt
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
110
KA-RSC-0
KA-RSC-Aff
KA-RBP-PL
KA-RBP-0
KA-MSC-0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
9
1
9
9
9
1
9
9
9
9
9
9
9
9
1
1
6
1
9
9
6
1
6
1
6
1
6
6
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
AppendixB.PartsofspeechdatacodedforMDSanalysis(cont’d)
KA-MSC-Aff
KA-MBP-PL
KA-MBPIntens
KA-MBP-0
KA-PSC-O
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
1
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
9
1
1
9
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
9
6
6
9
6
6
6
6
6
6
6
6
6
6
6
1
1
1
1
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
9
9
1
1
1
6
1
1
6
1
1
1
6
WOMAN
BOY
FATHER
SISTER
DOG
BIRD
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
111
KA-PSCCompVerb
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
6
9
9
1
6
6
1
1
6
1
6
1
6
1
KA-PBPTAMDir
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
9
9
1
1
1
6
1
1
6
1
1
1
6
KA-PBPTAMIndir
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
6
6
9
9
1
6
6
1
1
6
1
6
1
6
1
KA-PBP-0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
AppendixC.MDSoutputtableforpoints
TREE
SEED
HAT
BED
ARM
FACE
RIVER
HOUSE
WATER
STONE
MALE
FEMALE
WHITE
RED
ROUND
FLAT
OLD
YOUNG
GOOD
BAD
BIG
SHORT
HEAVY
SOFT
HAPPY
ANGRY
KNOW
WANT
LOVE
SEE/LOOKAT
SIT
WEAR
FIGHT
EAT
COME
COOK
BUILD
COUGH
HIT
WAVE
DIE
GIVE
BREAK
90
91
94
88
94
96
97
97
97
93
97
97
90
97
97
97
67
67
91
85
75
86
92
95
91
89
92
93
85
91
90
88
104
102
98
103
95
89
101
99
94
95
93
100
98
85
97
100
103
0.006000001
0.022000002
0.021000002
0.012000001
0.030000001
0.032000002
0.047000002
0.048000004
0.047000002
0.049000002
0.049000002
0.050000001
0.050000001
0.050000001
0.025
0.011000001
0.002
0.015000001
0.100000001
0.018000001
0.003
0.027000001
0.150000006
0.026000001
0.149000004
0.213000014
0.032000002
0.181000009
0.045000002
0.014
0.003
0.002
0.005
0.018000001
0.003
0.020000001
0.006000001
0.007
0.042000003
0.011000001
0.002
0.004
0.017000001
0.012000001
0.012000001
0.014
0.003
0.010000001
0.037
112
0.861697508
0.859375265
0.834974071
0.834398446
0.853451011
0.817363695
0.797914134
0.797914134
0.797914134
0.797914134
0.797914134
0.797914134
0.797914134
0.797914134
0.792363729
0.769228641
0.33050118
0.33050118
0.171691973
0.339187447
-0.321879643
0.10800206
0.001233645
0.108121724
0.001233645
-0.101191287
0.109490557
0.017681246
-0.098314302
-0.08870984
-0.284728932
-0.08686224
-0.763423849
-0.723274315
-0.720340106
-0.726102476
-0.859664189
-0.859962073
-0.808105513
-0.789116407
-0.913218145
-0.773803421
-0.823639237
-0.789116407
-0.899269646
-0.777703801
-0.837063773
-0.785703816
-0.829541173
coord2D
BIRD
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
1
0
1
1
2
5
0
0
2
0
3
3
2
3
4
1
0
0
1
2
1
1
0
3
0
0
1
3
0
coord1D
DOG
2
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
2
2
0
1
1
0
1
1
2
5
1
0
1
1
0
2
0
0
2
0
1
0
2
1
7
5
0
3
4
2
2
0
1
volume
SISTER
75
74
72
73
72
70
69
69
69
64
69
69
64
69
68
69
42
44
71
76
50
62
70
68
69
65
71
70
72
73
62
67
63
64
62
65
59
54
65
64
67
65
64
63
67
55
69
66
65
correctNay
FATHER
49
48
46
45
47
44
39.5
39.5
39.5
39.5
39.5
39.5
39.5
39.5
35
34
31.5
31.5
30
33
18
27
24.5
28
24.5
20
29
26
21
22
19
23
14
16
17
15
4
3
8
9
1
13
7
10
2
12
5
11
6
wrongNay
BOY
wrongYea
WOMAN
correctYea
rank
0.428549482
0.417361899
0.405622173
0.418269535
0.384299431
0.377763505
0.33058484
0.33058484
0.33058484
0.33058484
0.33058484
0.33058484
0.33058484
0.33058484
0.321871172
0.286396204
-0.467034192
-0.467034192
-0.508718317
-0.515571356
-0.817196723
-0.853864506
-0.720621782
-0.854013585
-0.720621782
-0.71706093
-0.868232146
-0.747266058
-0.55680758
-0.542168107
-0.532321416
-0.511127201
0.212456871
0.223196688
0.226282023
0.224426089
0.190334549
0.189018745
0.379253998
0.287659753
0.27430276
0.490559158
0.371566355
0.287659753
0.282302936
0.437822889
0.392426895
0.289630448
0.31672256
AppendixD.MDSoutputtableforcuttinglines
wrongNay
correctNay
PRE
normVector1D
normVector2D
midpoints
wrongYea
correctYea
KH.R.SC.0
KH.R.SC.VarStr
KH.R.BP.PGN
KH.R.BP.0
KH.M.SC.0
KH.M.SC.VarStr
KH.M.BP.SPRL1
KH.M.BP.SPRL2
KH.M.BP.0
KH.P.SC.0
KH.P.SC.Cop
KH.P.BP.TAM1
KH.P.BP.TAM2
KH.P.BP.0
KS.R.SC.0
KS.R.SC.Aff
KS.R.BP.Class
KS.R.BP.Num
KS.R.BP.0
KS.M.SC.0
KS.M.SC.Suff
KS.P.SC.0
KS.P.SC.Cop
KS.P.BP.TAMext
KS.P.BP.0
JI.R.SC.0
JI.R.SC.Aff
JI.R.BP.NGC
JI.R.BP.0
JI.M.SC.0
JI.M.SC.Aff
JI.M.BP.NGCagr
JI.M.BP.0
JI.P.SC.0
JI.P.SC.Aff
JI.P.SC.LV
JI.P.BP.TAM.abl
JI.P.BP.TAM.peri
JI.P.BP.0
MA.R.BP.NPArt
MA.R.BP.SpecArt
MA.R.BP.NClass
MA.R.BP.0
MA.M.SC.REL
MA.M.SC.REL.Prep
MA.M.SC.PossPron
MA.M.BP.Intens
17
31
17
31
31
17
1
31
16
31
17
17
14
16
15
28
15
14
27
12
21
23
28
23
28
16
15
18
29
14
31
30
15
15
16
14
1
14
30
17
29
29
19
31
17
17
12
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
3
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
0
0
1
0
0
1
0
3
0
0
0
0
1
0
2
1
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
15
30
15
15
30
46
15
31
15
30
30
32
31
27
15
27
27
15
17
3
22
15
22
15
15
16
29
18
15
14
15
30
29
29
30
44
30
15
31
19
19
29
17
31
31
35
1
0.933333333
1
0.933333333
0.933333333
1
1
0.9375
1
0.933333333
1
1
0.933333333
1
0.833333333
0.833333333
1
0.928571429
1
0.923076923
0.75
0.909090909
0.875
0.909090909
0.875
1
1
1
1
1
1
1
1
0.933333333
1
0.928571429
1
0.928571429
1
1
1
1
1
1
1
1
0.916666667
0.805007101
0.135342226
0.805007101
0.135342226
0.135342226
0.805007101
0.083924075
0.886533834
0.759709206
0.135342226
0.805007101
0.815400825
0.61189348
0.759709206
0.905904266
0.901715792
0.759709206
0.131411632
0.759709206
0.833042122
0.069839772
0.858824074
0.798757173
0.858824074
0.798757173
0.815400825
0.759709206
0.910031919
0.848618008
0.815400825
0.077290281
0.815400825
0.815400825
0.392207382
0.759709206
0.140628632
0.903766448
0.140628632
0.815400825
0.966883805
0.871261763
0.871261763
0.871261763
0.966883805
0.966883805
0.966883805
0.105814136
0.593265174
0.990798911
0.593265174
0.990798911
0.990798911
0.593265174
-0.996472152
-0.462663767
0.650262964
0.990798911
0.593265174
-0.578896791
-0.790940181
0.650262964
-0.42348254
-0.432329307
0.650262964
0.991327889
0.650262964
0.553209566
0.997558222
0.512270642
-0.601653537
0.512270642
-0.601653537
-0.578896791
0.650262964
0.414538184
0.529006122
-0.578896791
-0.997008632
-0.578896791
-0.578896791
0.919876823
0.650262964
-0.990062416
-0.428025943
-0.990062416
-0.578896791
-0.255216983
-0.490818643
-0.490818643
-0.490818643
-0.255216983
-0.255216983
-0.255216983
-0.994385925
-0.103897367
0.384659862
-0.103897367
0.384659862
0.384659862
-0.103897367
0.865474831
0.548464427
-0.052589374
0.384659862
-0.103897367
-0.322512825
0.245815811
-0.052589374
0.554941479
0.553038699
-0.052589374
0.384872399
-0.052589374
-0.403280106
-0.839075576
-0.362859967
0.237371388
-0.362859967
0.237371388
0.144504531
-0.052589374
-0.151896832
-0.236404902
-0.322512825
0.132589649
-0.322512825
-0.322512825
-0.10554094
0.359377534
-0.307058682
-0.938371886
-0.307058682
-0.322512825
0.452026892
0.181535394
0.181535394
0.181535394
0.452026892
0.452026892
0.452026892
0.499294263
113
AppendixD.MDSoutputtableforcuttinglines(cont’d)
wrongNay
correctNay
PRE
normVector1D
normVector2D
midpoints
wrongYea
correctYea
MA.M.BP.0
MA.P.SC.0
MA.P.SC.Cop
MA.P.BP.ConcPron
MA.P.BP.T1
MA.P.BP.T2
MA.P.BP.T3
MA.P.BP.T4
TO.R.SC.0
TO.R.SC.Aff
TO.R.BP.Num
TO.R.BP.Pron
TO.R.BP.PLmark
TO.R.BP.SubjIndN
TO.R.BP.0
TO.M.SC.0
TO.M.SC.Aff
TO.M.SC.RelMark
TO.P.BP.TAM
TO.P.BP.0
QE.R.SC.0
QE.R.SC.Aff
QE.M.SC.0
QE.M.SC.Suff
QE.M.BP.SPRL
QE.M.BP.0
QE.P.SC.0
QE.P.SC.Cop
QE.P.BP.TAM
QE.P.BP.TAMperi
CR.R.SC.0
CR.R.SC.Aff
CR.R.BP.Num
CR.R.BP.Dim
CR.R.BP.0
CR.M.SC.Attach
CR.M.SC.Aff
CR.M.SC.AffLgr
CR.M.BP.CMPR
CR.M.BP.0
CR.P.SC.0
CR.P.SC.DURAff
CR.P.SC.Cop
CR.P.BP.TAM
CR.P.BP.TAMperi
KI.R.SC.0
KI.R.SC.Aff
35
19
29
31
3
11
1
31
15
30
15
4
5
5
30
31
17
30
30
17
16
21
31
37
16
36
21
31
21
31
16
31
2
16
31
14
36
11
20
27
17
14
30
31
30
18
26
0
0
0
0
1
4
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
29
19
17
43
33
45
17
30
15
30
41
40
40
15
16
30
17
17
30
18
16
18
12
33
13
28
18
28
18
31
16
45
31
16
33
11
36
27
20
30
33
17
16
17
26
18
0.916666667
1
1
1
0.5
0.636363636
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.105869247
0.871261763
0.871261763
0.966883805
0.996973736
0.148875981
0.906657705
0.815400825
0.759709206
0.759709206
0.759709206
0.551009719
0.72049683
0.72049683
0.759709206
0.815400825
0.832039125
0.832039125
0.832039125
0.832039125
0.906241601
0.759709206
0.845659021
0.439234795
0.657924726
0.710980511
0.746366578
0.845659021
0.746366578
0.845659021
0.759709206
0.759709206
0.758010496
0.759709206
0.759709206
0.077290281
0.778488432
0.778488432
0.218296833
0.218296833
0.815400825
0.077290281
0.815400825
0.759709206
0.815400825
0.910031919
0.910031919
-0.994380059
-0.490818643
-0.490818643
-0.255216983
-0.077739114
-0.988855875
-0.421867048
-0.578896791
0.650262964
0.650262964
0.650262964
0.834498825
0.69345823
0.69345823
0.650262964
-0.578896791
0.55471695
0.55471695
0.55471695
0.55471695
-0.422760169
0.650262964
-0.533723543
-0.898372303
-0.753083697
-0.703211712
-0.665535071
-0.533723543
-0.665535071
-0.533723543
0.650262964
0.650262964
0.652242354
0.650262964
0.650262964
-0.997008632
-0.627658953
-0.627658953
0.975882418
0.975882418
-0.578896791
-0.997008632
-0.578896791
0.650262964
-0.578896791
0.414538184
0.414538184
0.499292599
0.181535394
0.181535394
0.452026892
-0.867734984
-0.319300761
-0.929610446
-0.322512825
-0.052589374
-0.052589374
-0.052589374
0.79789426
0.868118196
0.868118196
-0.052589374
-0.322512825
0.003333235
0.003333235
0.003333235
0.003333235
0.011581476
-0.052589374
0.104845334
0.499757669
0.286430384
0.342388845
0.302672077
0.104845334
0.302672077
0.104845334
-0.052589374
-0.052589374
0.91607827
-0.052589374
-0.052589374
0.132589649
-0.790927946
-0.790927946
0.064665113
0.064665113
-0.322512825
0.132589649
-0.322512825
-0.052589374
-0.322512825
-0.151896832
-0.151896832
114
AppendixD.MDSoutputtableforcuttinglines(cont’d)
wrongNay
correctNay
PRE
normVector1D
normVector2D
midpoints
wrongYea
correctYea
KI.R.BP.Num.Suff
KI.R.BP.Num.Peri
KI.R.BP.Num.Vind
KI.R.BP.0
KI.M.SC.0
KI.M.SC.GEN
KI.M.SC.REL
KI.M.BP.CMPR
KI.M.BP.0
KI.P.SC.0
KI.P.SC.PlusNoun
KI.P.SC.FOC
KI.P.BP.TAMIndArg
KI.P.BP.0
EN.R.SC.0
EN.R.SC.Aff
EN.R.SC.Peri
EN.R.BP.NumAbl
EN.R.BP.NumSuff
EN.R.BP.0
EN.M.SC.0
EN.M.SC.Aff
EN.M.SC.REL
EN.M.BP.CMPRAbl
EN.M.BP.CMPRSuff
EN.M.BP.CPRSuff2
EN.M.BP.CMPRPeri
EN.M.BP.SPRLAbl
EN.M.BP.SPRLSuff
EN.M.BP.SPRLSuff2
EN.M.BP.0
EN.P.SC.0
EN.P.SC.Cop
EN.P.SC.CopArt
EN.P.BP.TAbl
EN.P.BP.Taff
EN.P.BP.TPeri
EN.P.BP.P+N.Suff
EN.P.BP.P+N.Peri
IN.R.SC.0
IN.R.SC.Aff
IN.R.BP.CaseNum
IN.R.BP.0
IN.M.SC.0
IN.M.SC.Aff
IN.M.BP.CMPR
IN.M.BP.GendAgr
2
14
6
28
15
16
17
14
35
32
0
15
17
31
19
30
0
1
15
33
28
36
17
0
10
0
1
0
11
0
35
17
18
14
11
3
32
17
32
16
33
32
17
16
34
14
1
0
2
0
0
0
0
0
0
0
1
0
0
0
0
2
3
0
0
1
0
0
2
0
0
3
0
0
0
2
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
2
0
0
0
1
0
0
2
0
1
0
2
0
1
0
0
0
0
0
3
0
0
0
2
0
0
0
0
1
0
1
42
28
38
16
33
32
31
34
14
15
47
33
31
17
28
16
47
48
33
16
20
11
32
47
36
48
48
47
36
48
14
32
31
35
34
43
17
32
17
31
16
17
32
33
14
35
47
1
0.857142857
1
1
1
1
1
1
1
0.9375
0
1
1
1
0.894736842
0.842105263
0
1
0.933333333
1
0.95
0.846153846
1
0
0.7
0
1
0
0.818181818
0
1
1
1
1
0.636363636
0.5
1
1
1
0.888888889
1
1
1
1
0.928571429
1
0.5
0.758010496
0.134894412
0.726753379
0.759709206
0.108156838
0.759709206
0.845659021
0.03816815
0.03816815
0.905462452
0.995343772
0.750974118
0.845659021
0.845659021
0.836046157
0.894682439
0.997660913
0.080235799
0.13658569
0.759709206
0.705045934
0.004674728
0.815400825
0.994291391
0.101960971
0.148835634
0.122816239
0.994291391
0.105237598
0.148835634
0.03816815
0.815400825
0.157747437
0.746614471
0.35504321
0.759653708
0.815400825
0.815400825
0.815400825
0.888541909
0.759709206
0.815400825
0.815400825
0.077290281
0.679071109
0.03816815
0.112080302
0.652242354
0.990859979
0.686898483
0.650262964
-0.994133843
0.650262964
-0.533723543
-0.999271331
-0.999271331
-0.424426376
0.096388671
0.66033164
-0.533723543
-0.533723543
0.548659115
-0.446702734
0.068357168
0.996775911
0.99062826
0.650262964
-0.70916164
-0.999989073
-0.578896791
0.106698784
-0.9947884
0.988861949
0.992429429
0.106698784
-0.994447107
0.988861949
-0.999271331
-0.578896791
-0.987479491
0.665256966
-0.934849891
-0.650327797
-0.578896791
-0.578896791
-0.578896791
-0.458795461
0.650262964
-0.578896791
-0.578896791
-0.997008632
-0.734072496
-0.999271331
0.993699153
0.91607827
0.384684387
0.851460168
-0.052589374
0.498570448
0.359377534
0.104845334
0.493397837
0.493397837
0.57581991
0.903267054
0.778518423
0.104845334
0.104845334
-0.360463655
0.549675992
0.893144248
0.493979893
0.38459134
0.359377534
0.301908103
0.530793426
-0.322512825
0.906817239
0.500063737
-0.858103443
-0.849346925
0.906817239
0.499311583
-0.858103443
0.493397837
-0.322512825
-0.19994926
0.812687789
-0.467402502
-0.872386957
-0.322512825
-0.322512825
-0.322512825
0.546715708
0.359377534
-0.322512825
-0.322512825
0.132589649
0.314391842
0.493397837
-0.84931586
115
AppendixD.MDSoutputtableforcuttinglines(cont’d)
correctYea
wrongYea
wrongNay
correctNay
PRE
normVector1D
normVector2D
midpoints
IN.M.BP.NumAgr
IN.M.BP.CaseAgr
IN.M.BP.0
IN.P.SC.0
IN.P.SC.Comp
IN.P.SC.Cop
IN.P.BP.Iter
IN.P.BP.Aux
IN.P.BP.IndNum
IN.P.BP.IndGend
IN.P.BP.Suppletive
IN.P.BP.FullAkt
IN.P.BP.PartAkt
IN.P.BP.RestrAkt
KA.R.SC.0
KA.R.SC.Aff
KA.R.BP.PL
KA.R.BP.0
KA.M.SC.0
KA.M.SC.Aff
KA.M.BP.PL
KA.M.BP.Intens
KA.M.BP.0
KA.P.SC.O
KA.P.SC.CompVerb
KA.P.BP.TAMDir
KA.P.BP.TAMIndir
KA.P.BP.0
1
33
16
15
1
32
1
3
2
12
3
15
1
32
24
30
31
15
30
31
1
13
31
41
6
11
6
32
0
0
0
2
0
0
1
1
0
2
1
2
0
0
1
0
0
0
0
0
0
0
0
1
1
3
1
0
0
0
0
0
1
0
1
1
0
0
2
0
1
0
2
0
0
0
1
1
0
0
0
1
2
0
2
0
48
16
33
32
47
17
46
44
47
35
43
32
47
17
6
16
15
31
16
15
46
31
13
4
38
33
38
15
1
1
1
0.866666667
0.5
1
0
0.5
1
0.833333333
0.4
0.866666667
0.5
1
0.571428571
1
1
1
0.9375
0.933333333
1
1
1
0.6
0.625
0.727272727
0.625
1
0.083924075
0.759709206
0.759709206
0.146680095
0.840059075
0.815400825
0.953009227
0.941653131
0.840928597
0.26358795
0.950644026
0.146680095
0.840059075
0.815400825
0.145426729
0.759709206
0.815400825
0.815400825
0.807219254
0.609497902
0.083924075
0.077290281
0.077290281
0.919650781
0.940998987
0.137246678
0.940998987
0.815400825
-0.996472152
0.650262964
0.650262964
-0.989183982
-0.542494931
-0.578896791
0.302941269
-0.33658488
-0.541146093
-0.964635368
-0.310283639
-0.989183982
-0.542494931
-0.578896791
-0.989369024
0.650262964
-0.578896791
-0.578896791
-0.590251706
-0.792787682
-0.996472152
-0.997008632
-0.997008632
0.392737115
-0.338409378
-0.9905369
-0.338409378
-0.578896791
0.865474831
0.359377534
0.359377534
-0.306770662
-0.916119457
-0.322512825
-0.76640673
-0.896301325
-0.916224298
-0.408055624
-0.892136433
-0.306770662
-0.916119457
-0.322512825
-0.403838328
0.359377534
-0.322512825
-0.322512825
0.228067302
0.2454613
0.865474831
0.132589649
0.132589649
-0.61577581
-0.882509908
-0.318698564
-0.882509908
-0.322512825
116
REFERENCES
Anderson,LloydB.1974.Distinctsourcesoffuzzydata:waysofintegrating
relativelydiscreteandgradientaspectsoflanguage,andexplaininggrammaron
thebasisofsemanticfields.InRogerW.Shuy&Charles-JamesN.Bailey(eds.),
Towardstomorrow’slinguistics,50–64.Washington,D.C.:GeorgetownUniversity
Press.
Anderson,LloydB.1982.The‘perfect’asauniversalandasalanguage-particular
category.InPaulHopper(ed.),Tense-aspect:Betweensemanticsandpragmatics,
227–64.Amsterdam:JohnBenjamins.
Anderson,LloydB.1986.Evidentials,pathsofchange,andmentalmaps:
Typologicallyregularasymmetries.InWallaceChafe&JohannaNichols(eds.),
Evidentiality:Thelinguisticencodingofepistemology,273–312.Norwood:Ablex.
Anderson,LloydB.1987.Adjectivalmorphologyandsemanticspace.InBarbara
Need,EricSchiller&AnnBosch(eds.),Papersfromthe23rdAnnualRegional
MeetingoftheChicagoLinguisticSociety,PartOne:TheGeneralSession,1–17.
Chicago:ChicagoLinguisticSociety.
Auwera,Johanvander&VladimirA.Plungian.1998.Modality’ssemanticmap.
LinguisticTypology2.79–124.
Baayen,R.Harald.2008.Analyzinglinguisticdata:Apracticalintroductionto
statisticsusingR.Cambridge:CambridgeUniversityPress.
Bickel,Balthasar.2010.Capturingparticularsanduniversalsinclauselinkage:A
multivariateanalysis.InIsabelleBril(ed.),Clause-hierarchyandclause-linking:
Thesyntaxandpragmaticsinterface,51-101.Amsterdam:JohnBenjamins.
Borg,Ingwer&PatrickGroenen.1997.Modernmultidimensionalscaling:Theoryand
applications.NewYork:Springer.
Bybee,JoanL.1985.Morphology:Astudyoftherelationbetweenmeaningandform.
Amsterdam:Benjamins.
Bybee,JoanL.,ReverePerkins&WilliamPagliuca.1994.Theevolutionofgrammar:
Tense,aspectandmodalityinthelanguagesoftheworld.Chicago:Universityof
ChicagoPress.
Chafe,WallaceL.1970.Meaningandthestructureoflanguage.Chicago:Universityof
ChicagoPress.
Chafe,WallaceL.(ed.).1980.Thepearstories:Cognitive,cultural,andlinguistic
aspectsofnarrativeproduction.Norwood,NewJersey:Ablex.
117
Childs,GeorgeTucker.1995.AgrammarofKisi:aSouthernAtlanticlanguage.Berlin:
deGruyter.
Childs,GeorgeTucker.2000.AdictionaryofKisi.Cologne:RudigerKoppe.
Comrie,Bernard.1975.Politepluralsandpredicateagreement.Language51(2).
406-18.
Comrie,Bernard.1976.Aspect.Cambridge:CambridgeUniversityPress.
Comrie,Bernard.1989.Languageuniversalsandlinguistictypology.2ndedn.Chicago:
UniversityofChicagoPress.
Corbett,GrevilleG.2000.Number.Cambridge:CambridgeUniversityPress.
Croft,William.1991.Syntacticcategoriesandgrammaticalrelations:Thecognitive
organizationofinformation.Chicago:UniversityofChicagoPress.
Croft,William.1996.‘Markedness’and‘universals’:fromthePragueschoolto
typology.InKurtR.Jankowsky(ed.),Multipleperspectivesonthehistorical
dimensionsoflanguage,15-21.Münster:Nodus.
Croft,William.2001.Radicalconstructiongrammar.Oxford:OxfordUniversityPress.
Croft,William.2003.Typologyanduniversals.2ndedn.Cambridge:Cambridge
UniversityPress.
Croft,William.2012.Verbs:Aspectandcausalstructure.Oxford:OxfordUniversity
Press.
Croft,William(toappear).Morphosyntax.Cambridge:CambridgeUniversityPress.
Croft,William,HavaBat-ZeevShyldkrot&SuzanneKemmer.1987.Diachronic
semanticprocessesinthemiddlevoice.InAnnaGiacoloneRamat,Onofrio
Carruba&GuilianoBernini(eds.),Papersfromthe7thInternationalConference
onHistoricalLinguistics,179–192.Amsterdam:JohnBenjamins.
Croft,William&KeithT.Poole.2008.Inferringuniversalsfromgrammatical
variation:Multidimensionalscalingfortypologicalanalysis.Theoretical
Linguistics34(1).1-37.
Cyffer,Norbet&JohnHutchison.1990.DictionaryoftheKanurilanguage.
Providence:Foris.
118
Cysouw,Michael.2007.Newapproachestoclusteranalysisoftypologicalindices.In
ReinhardKöhler&PeterGrzbek(eds.),Exactmethodsinthestudyoflanguage
andtext,61-76.Berlin:MoutondeGruyter.
Dahl,Östen.1985.Tenseandaspectsystems.Oxford:BasilBlackwell.
Dixon,RobertM.W.1979.Ergativity.Language55(1).59-138.
Dixon,RobertM.W.1982.Wherehavealltheadjectivesgone?Berlin:Moutonde
Gruyter.
DuBois,JohnW.1985.Competingmotivations.InJohnHaiman(ed.),Iconicityin
syntax,343-65.Amsterdam:JohnBenjamins.
Fillmore,CharlesJ.1970.Thegrammarofhittingandbreaking.InRoderickA.Jacobs
&PeterS.Rosenbaum(eds.),ReadingsinEnglishTransformationalGrammar,
120–133.Waltham,MA:Ginn.
Givón,Talmy.1979.Onunderstandinggrammar.NewYork:AcademicPress.
Greenberg,JosephH.1960.ThegeneralclassificationofCentralandSouthAmerican
languages.InAnthonyWallace(ed.),MenandCultures:Selectedpapersofthe5th
InternationalCongressofAnthropologicalandEthnologicalSciences,791-94.
Philadelphia,UniversityofPennsylvaniaPress.
Greenberg,JosephH.1966/2005.Languageuniversals:Withspecialreferenceto
featurehierarchies.NewYork:MoutondeGruyter.
Greenberg,JosephH.1987.LanguageintheAmericas.Stanford:StanfordUniversity
Press.
Greenberg,JosephH.1990.Someuniversalsofgrammarwithparticularreferenceto
theorderofmeaningfulelements.InKeithDenning&SuzanneKemmer(eds.),
Onlanguage:SelectedwritingsofJosephH.Greenberg,40-70.Stanford:Stanford
UniversityPress.
Haspelmath,Martin.1997a.Indefinitepronouns.Oxford:OxfordUniversityPress.
Haspelmath,Martin.1997b.Fromspacetotime:Temporaladverbialsintheworld’s
languages.München:LincomEuropa.
Haspelmath,Martin.2003.Thegeometryofgrammaticalmeaning:Semanticmaps
andcross-linguisticcomparison.InMichaelTomasello(ed.),Thenewpsychology
oflanguage,vol.2,211–42.Mahwah,NJ:LawrenceErlbaumAssociates.
119
Hengeveld,Kees.1992.Non-verbalpredication:Theory,typology,diachrony.Berlin:
MoutondeGruyter.
Hopper,PaulJ.&SandraA.Thompson.1980.Transitivityingrammaranddiscourse.
Language56(2).251-299.
Hopper,PaulJ.&SandraA.Thompson.1984.Thediscoursebasisforlexical
categoriesinuniversalgrammar.Language60(4).703-752.
Hutchison,John.1981.TheKanurilanguage:Areferencegrammar.Madison:
UniversityofWisconsin,Madison.
Jakobson,Roman.1932/1984.StructureoftheRussianverb.InLindaR.Waugh&
MorrisHale(eds.),RussianandSlavicgrammar:Studies,1931-1981(Janua
Linguarum,SeriesMaior106),1-14.TheHague:Mouton.
Jakobson,Roman.1939/1984.Zerosign.InLindaR.Waugh&MorrisHale(eds.),
RussianandSlavicgrammar:Studies,1931-1981(JanuaLinguarum,SeriesMaior
106),151-160.TheHague:Mouton.
Kemmer,Suzanne.1983.Themiddlevoice.(TypologicalStudiesinLanguage,23.)
Amsterdam:JohnBenjamins.
Kilian-Hatz,Christa.2003.Khwedictionary.Cologne:RüdigerKoppe.
Kilian-Hatz,Christa.2008.AgrammarofmodernKhwe(CentralKhoisan).Cologne:
RüdigerKoppe.
Lehmann,Christian&EdithMoravcsik.2000.Nouns.InGeertBooij,Christian
Lehmann&JoachimMugdan(eds.),Morphology:Aninternationalhandbookon
inflectionandword-formation,vol.1,732-57.Berlin:deGruyter.
Langacker,RonaldW.1987.Nounsandverbs.Language63(1).53-94.
Levin,Beth.1993.Englishverbclassesandalternations:Apreliminaryinvestigation.
Chicago:UniversityofChicagoPress.
Levin,Beth(inpress).Verbclasseswithinandacrosslanguages.InBernardComrie
andAndrejMalchukov(eds.),Valencyclasses:Acomparativehandbook.Berlin:
DeGruyter.
Levinson,StephenC.&SérgioMeira.2003.'Naturalconcepts'inthespatial
topologicaldomain—adpositionalmeaningsincrosslinguisticperspective:An
exerciseinsemantictypology.Language79(3).485-516.
120
Lichtenberk,Frantisek.2008a.AdictionaryofToqabaqita.Canberra:Pacific
Linguistics.
Lichtenberk,Frantisek.2008b.AgrammarofToqabaqita.Berlin:deGruyter.
Martin,JackB.2011.AgrammarofCreek(Muskogee).Lincoln:Universityof
NebraskaPress.
Martin,JackB.&MargaretM.Mauldin.2000.AdictionaryofCreek/Muskogee.
Lincoln:UniversityofNebraskaPress.
Nichols,Johanna.2004.Ingush-EnglishandEnglish-Ingushdictionary.NewYork:
RutledgeCurzon.
Nichols,Johanna.2011.Ingushgrammar.Berkeley:UniversityofCaliforniaPress.
Pensalfini,Robert.1997.Jingulugrammar,dictionary,andtexts.Cambridge:
MassachusettsInstituteofTechnologydoctoraldissertation.
Pensalfini,Robert.2003.AgrammarofJingulu.Canberra:PacificLinguistics.
Poole,KeithT.2000.Non-parametricunfoldingofbinarychoicedata.Political
Analysis8.211–237.
Poole,KeithT.2005.Spatialmodelsofparliamentaryvoting.Cambridge:Cambridge
UniversityPress.
Rosch,Eleanor.1978.Principlesofcategorization.InEleanorRosch&BarbaraB.
Lloyd(eds),Cognitionandcategorization,27–48.Hillsdale,NJ:Lawrence
Erlbaum.
Ross,JohnR.1972.Thecategorysquish:EndstationHauptwort.InPaulM.
Peranteau,JudithN.Levi&GloriaC.Phares(eds.),ProceedingsoftheEighth
RegionalMeetingoftheChicagoLinguisticSociety,316-28.Chicago:Chicago
LinguisticSociety.
Ruhlen,Merritt.1991.TheAmerindphylumandtheprehistoryoftheNewWorld.In
SydneyM.Lamb&E.DouglasMitchell(eds.),Sprungfromsomecommonsource,
328-50.Stanford:StanfordUniversityPress.
Schachter,Paul&TimothyShopen.2007.Partsofspeechsystems.InTimothy
Shopen(ed.),Languagetypologyandsyntacticdescription,vol.1:Clausestructure,
2ndedn.,1-60.Cambridge:CambridgeUniversityPress.
Searle,JohnR.1969.Speechacts:anessayinthephilosophyoflanguage.Cambridge:
CambridgeUniversityPress.
121
Silverstein,Michael.1976.Hierarchyoffeaturesandergativity.InRobertM.W.
Dixon(ed.),GrammaticalcategoriesinAustralianlanguages,112-171.New
Jersey:HumanitiesPress.
Smith,CarlotaS.1997.Theparameterofaspect.Dordrecht:KluwerAcademic
Publishers.
Stanley,Thomas.1687.Thehistoryofphilosophy.GarlandPub.
Stassen,Leon.1997.Intransitivepredication.Oxford:ClarendonPress.
Stebbins,TonyaN.2011.Mali(Baining)grammar.Canberra:PacificLinguistics.
Stebbins,TonyaN.2012.Mali(Baining)dictionary.Canberra:Asia-PacificLinguistics.
Trubetzkoy,Nikolai.1931.DiephonologischenSysteme.TravauxduCercle
LinguistiquedePrague4.96-116.
Trubetzkoy,Nikolai.1939/1969.Principlesofphonology.(TranslationofGrundzüge
derPhonologie,Prague,1939).BerkeleyandLosAngeles:UniversityofCalifornia
Press.
Vendler,Zeno.1967.Linguisticsinphilosophy.Ithaca:CornellUniversityPress.
Weber,DavidJ.1989.AgrammarofHuallaga(Huánuco)Quechua.Berkeley:
UniversityofCalifornia.
Weber,DavidJ.,FélixC.Zambrano,TeodoroC.Villar&MarleneB.Dávila.2008.
Rimaycuna:QuechuadeHuánuco(SerieLingüísticaPeruana48).2ndedn.Lima:
InstitutoLingüísticodeVerano.
Wetzer,Harrie.1996.Thetypologyofadjectivalpredication.Berlin:Moutonde
Gruyter.
122