Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Table 3.1 A sampling of completed prokaryotic genomes. (Modified from US Department of Environment Joint Genome Institute) Organism Genome size (Mb) ORFs Phenotype/habitat Bacteria Acinetobacter sp. ADPI 3.59 3425 Agrobacterium tumefaciens C58 Dupont Anabaena variabilis ATCC29413 5.67 5467 7.10 5720 Bacillus cereus ATCC 14579 Bradyrhizobium japonicum USDA 110 Buchnera aphidicola APS Burkholderia xenovorans LB400 5.42 9.10 5397 8371 0.655 9.73 609 8784 Candidatus Tremblaya princeps 0.139 110 Carsonella rudii 0.160 182 Clostridium acetobutylicum ATCC 824 Dechloromonas aromatica RCB Deinococcus radiodurans R1 4.13 3955 4.50 3.28 4247 3239 Desulfovibrio desulfuricans G20 3.73 3853 Dehalococcoides ethenogenes strain 195 (now D. mccartyi) Escherichia coli K12 1.47 1629 4.64 4359 Escherichia coli O157:H7 EDL933 5.62 5622 Geobacter metallireducens GS‐15 4.01 3587 Mesotoga prima MesG1.Ag 4.2 2.97 2736 Methylococcus capsulatus Bath Mycoplasma genitalium 3.30 0.580 3012 516 Aerobic chemoheterotroph and human pathogen/water, soil, human skin Aerobic chemoheterotroph/soil, plant pathogen Oxygenic photosynthesis, nitrogen fixation/ water, soil Aerobic spore‐forming heterotroph/soil Aerobic heterotroph, nitrogen‐fixing symbiont on soybean roots/soil Insect endosymbiont Aerobic heterotroph, metabolizes polychlorinated biphenyl/soil Obligate endosymbiont of a citrus‐feeding mealy bug; this bacterium harbors an endosymbiont Obligate endosymbiont of a psyllid, a plant sap‐feeding insect Obligate anaerobic spore‐forming chemoorganotroph/soil Facultative benzene degrader/water, soil Chemoheterotroph, aerobe, highly radiation resistant/soil Strict anaerobe, chemoorganotroph using substrate as electron acceptors/sediment Strict anaerobe using chlorinated solvents as final electron acceptor/sewage, groundwater Facultative chemoheterotroph/human intestine Facultative chemoautotroph, human pathogen/intestine, food Anaerobic chemoheterotroph using metal anions as electron acceptors/water, subsurface sediment Strict anaerobe containing a reductive dehalogenase gene; isolated from polychlorinated biphenyl (PCB)‐ contaminated sediment Aerobic methanotroph/soil water Intracellular human parasite of urogenital tract Table 3.1 Continued Organism Genome size (Mb) ORFs Phenotype/habitat Nitrobacter winogradskyi Nb‐255 3.40 3174 Pelagibacter ubique (SARII) HTCC 1062 Pelagibacter ubique (SAR 11) HIMB59 Polaromonas naphthalenivorans CJ2 Prochlorococcus marinus MIT 9312 Prochlorococcus marinus MIT 9313 Pseudomonas fluorescens Pf‐5 Pseudomonas putida KT2440 Rhodopseudomonas palustris CGA009 Shewanella oneidensis MR‐1 1.309 1394 1.410 1532 5.34 5022 1.70 2.41 7.07 6.18 5.86 1852 2321 6223 5446 4897 5.13 4601 Silicibacter pomeroyi DSS‐3 4.60 4314 Sorangium cellulosum So ce 56 13.0 9700 Streptomyces avermitilis MA‐4680 9.11 7759 Synechococcus elongatus PCC 7942 Thermotoga maritima MSB8 2.74 1.86 2712 1907 Trichodesmium erythraeum ImS101 7.75 4494 Facultative autotroph, CO2 fixation, nitrite oxidizer/soil Aerobic marine heterotroph/coastal temperate NE Pacific Aerobic marine heterotroph/coastal tropical N Pacific Chemoorgano‐ and lithotrophic aerobe/ terrestrial sediment Photosynthetic bacterioplankton/ocean Photosynthetic bacterioplankton/ocean Aerobic chemoheterotroph/soil Aerobic chemoautotroph/soil Physiologically versatile‐facultative photosynthetic organism/water, soil Metabolically versatile chemoheterotroph, metal reduction/lake sediment Aerobic heterotroph important in the sulfur cycle/seawater Aerobic hterotroph with complex developmental life cycle (member of the myxobacteria) Aerobic chemoheterotroph, filamentous spore former/soil Photosynthetic bacterioplankton/ocean Hyperthermophilic anaerobe/geothermal marine sediment Photosynthetic nitrogen‐fixing filamentous cyanobacteria/ocean water Archaea Archaeoglobus fulgidus DSM 4304 2.18 2519 Cenarchaeum symbiosum A 2.0 2066 Halobacterium salinarum NRC‐1 2.57 2726 Haloferax volcanii DS2, ATCC 29605 Methanopyrus kandleri AV19 4,0 4064 1.69 1765 Methanosarcina barkeri Fusaro 4.87 3854 Nanoarchaeum equitans Kin4‐M 0.49 608 Strict anaerobe, hyperthermophilic, sulfate reduction/hot springs Aerobe, psychrophile, obligate symbiont within marine sponge Chemoorganotrophic aerobe/highly saline ponds and lakes Chemoorganotrophic aerobe, mesophilic/ salty shore of the Dead Sea Strict anaerobe hyperthermophilic, methanogenesis/hot springs Strict anaerobe, methanogenesis, cellulose metabolism/marine mud, sludge Intracellular parasite, anaerobic hyperthermophile/hot springs Table 3.1 Continued Organism Genome size (Mb) ORFs Phenotype/habitat Nitrosopulilus maritinus SCM1 1.64 1842 Pyrococcus furiosus DSM 3638 1.90 2179 Sulfolobus solfataricus P2 2.99 3141 Thermoplasma volcanium GSS1 1.58 1610 Aerobic, mesophile, autotrophic ammonia oxidizer/marine Strict anaerobe hyperthermophilic, radiation resistant, sulfur respiration/hot springs Strict aerobe hyperthermophilic, acidophile, sulfur oxidizer/hot springs Facultative acidophilic thermophile/ hydrothermal vent Mb, mega bases, 106 base pairs; ORF, open reading frame; Integrated Microbial Genomes website: http://img.jgi.doe .gov/cgi‐bin/w/main.cgi. Table 3.2 Framework for categorizing and organizing open reading frames (ORFs) found during genome‐ sequencing projects. Twenty‐five gene categories (cluster of orthologous groups of proteins: COGs) and their respective contributions to the sequenced genome of Pseudomonas putida KT2240 are listed. (From US Department of Environment Joint Genome Institute) Functional group of genes (COG) Example genome (Pseudomonas putida KT2440): number of genes in each functional group (% of total) Information storage and processing J Translation, ribosomal structure and biogenesis A RNA processing and modification K Transcription L DNA replication, recombination and repair B Chromatin structure and dynamics 187 (3.4) 3 (0.05) 440 (8.1) 221 (4.0) 2 (0.04) Cellular processes D Cell cycle control, cell division and chromosome partitioning Y Nuclear structure V Defense mechanisms T Signal transduction mechanisms M Cell wall/membrane/envelope biogenesis N Cell motility Z Cytoskeleton W Extracellular structures U Intracellular trafficking, secretion, and vesicular transport O Posttranslational modification, protein turnover, chaperones Metabolism C Energy production and conversion G Carbohydrate transport and metabolism E Amino acid transport and metabolism F Nucleotide transport and metabolism H Coenzyme transport and metabolism I Lipid transport and metabolism P Inorganic ion transport and metabolism Q Secondary metabolites biosynthesis, transport and catabolism Poorly characterized R General function prediction only S Function unknown 42 (0.77) – 63 (1.2) 330 (6.1) 266 (4.9) 127 (2.3) – – 123 (2.3) 174 (3.2) 293 (5.4) 228 (4.2) 516 (9.5) 91 (1.7) 186 (3.4) 181 (3.3) 275 (5.1) 128 (2.3) 564 (10.4) 1014 (18.6) Table 3.3 Physiological classification of life forms based on energy source and carbon source. The five categories assist in understanding both individual microorganisms and biogeochemical systems Carbon source Fixed organic Gaseous CO2 Energy source Chemical, organic Chemical, inorganic Light Chemosynthetic organoheterotroph (Example: humans, fungi, Pseudomonas) Chemosynthetic lithoheterotroph (Example: Beggiatoa sp.) Photosynthetic heterotroph (Example: purple and green bacteria; Rhodospirillum) Chemosynthetic lithoautotroph (Example: ammonia‐, hydrogen‐, and sulfur‐oxidizing bacteria; Nitrosomonas, Aquifex) Photosynthetic autotroph Terminology: • Autotroph: carbon from CO2 fixation • Heterotroph: carbon assimilated from (fixed) organic compounds • Photosynthetic: energy from light • Chemosynthetic: energy from oxidizing reduced chemicals • Chemolitho: energy from oxidizing inorganic reduced chemicals • Chemoorgano: energy from oxidizing organic reduced chemicals. (Example: plants, algae, Prochlorococcus) Table 3.4 Predominant ecological limitations for energy and growth for three physiological classes of microorganisms in a variety of habitats Habitat characteristics and nutrient limitations faced by three physiological classes of microorganisms Habitat type Photoautotroph Chemolithotroph Chemoorganoheterotroph Ocean water Daily light cycle, light penetration depth; scarce iron Flux of reduced inorganic compounds, especially NH3, H2S, H2, or CH4 from nutrient turnover and hydrothermal vents Carbon flux from phototrophs, dead biomass, and influent waters Lake water Daily light cycle, light penetration depth; scarce phosphorus Flux of reduced inorganic materials, especially NH3, H2, and CH4 from nutrient turnover Carbon flux from phototrophs, dead biomass and influent waters Sediment (freshwater and oceanic) Daily light cycle, light penetration depth Flux of reduced inorganic materials, especially NH3 and H2 from nutrient turnover or H2, H2S, or CH4 from hydrothermal vents Flux of organic carbon from phototrophs and dead biomass; flux of final electron acceptors to carbon‐rich anaerobic strata Soil Daily light cycle, light penetration depth Flux of reduced gaseous substrates, especially methane from nutrient turnover by anaerobes Slow turnover of soil humus, dead biomass, plant root exudates; leaf fall from vegetation Subsurface sediment No light Flux of reduced inorganic materials, especially H2 and CH4 from geothermal origin Carbon flux from nutrient turnover Table 3.5 phoB (PhoB, response regulator), phoR (PhoR, sensor kinase), phoU, and pstA, ‐B, ‐C, ‐S (facilitate PhoR function) Enteric bacteria Pho system (acquisition of inorganic phosphate) Phosphate limitation Multiple genes, including those controlling ammonia assimilation Klebsiella aerogenes and many others glnB, glnD, glnG, glnL (transcriptional regulators and enzyme modifiers) Some enteric bacteria Ntr system (enhances ability to acquire nitrogen from organic sources and from low ammonia concentrations) Nif system (nitrogen fixation) Ammonia limitation Ammonia limitation relA and spoT (enzymes of (p)ppGpp metabolism) Enteric bacteria and many others Stringent response crp (transcription activator CAP): cya (adenylate cyclase) Regulatory genes (and their products) Amino acid or energy limitation Organism(s) Enteric bacteria System Nutrient utilization Carbon Catabolite limitation repression Stimulus/ conditions PhoA (alkaline phosphatase) and ~40 other genes involved in utilizing organophosphates Multiple genes encoding nitrogenase (for nitrogen fixation) Genes encoding catabolic enzymes (lac, mal, gal, ara, tna, dsd, hut, etc.) Genes (>200) for ribosomes, other proteins involved in translation and biosynthetic enzymes glnA (glutamine synthetase), hut, and others encoding deaminases Regulated genes (and their products) Complex; ammonia represses activity of NtrC; under low ammonia status, NtrC is active and promotes transcription of NifA, the activator protein for nif transcription Two‐component regulation; transcriptional activation by PhoB upon signal of low phosphate from the sensor kinase, PhoR Complex Activation by CAP protein complexed with cAMP as a signal of carbon source limitations (p)ppGpp thought to modify promoter recognition by RNA polymerase Type of regulation Prominent gene regulation systems that allow bacteria to sense and coordinate metabolism according to environmental conditions, especially starvation‐related stresses. (From Schaechter, M., J.L. Ingram, and F.C. Niedhardt. 2006. Microbe. American Society for Microbiology Press, Washington, DC. With permission from the American Society for Microbiology) Sporulation rpoS (sigma‐S), lrp (Lrp), crp (CAP), dsrA, rprA, and oxyS (regulatory sRNA molecules), and many other regulatory genes SpoOA (activator), spoOF (modulator), and many other regulatory genes All bacteria Bacillus subtilis and other spore formers fis (Fis), hns (H‐NS), relA (RelA), and spoT (SpoT) Unknown ArcA (ArcA, repressor) and arcB (ArcB, modulator) fnr (Fnr) All bacteria E. coli and other facultative bacteria E. coli E. coli Many (>100) genes for spore formation Hundreds of genes, many involved in macromolecule synthesis Hundreds of genes affecting structure and metabolism Genes (>20) for enzymes of fermentation pathways Genes for nitrate reductase and other enzymes of anaerobic respiration Many genes (>30) for aerobic enzymes Complex; involves availability of RNA polymerase/sigma‐70 holoenzyme influenced by passive control Multiple modes of regulation in a complex network; involves several global regulatory systems, in addition to selection of genes with promoters recognized by σs Complex; cells respond to nutrient deprivation with SpoOA phosphorelay; a cluster of sigma factors assist in controlling seven stages of differentiation leading to endospore formation and release Unknown Repression of genes of aerobic enzymes by ArcA upon signal from ArcB of low oxygen Transcriptional activation by Fnr cAMP, cyclic adenosine monophosphate; CAP, catabolite activator protein; (p)ppGpp; a mixture of guanosine tetra‐ and penta‐phosphate. Starvation Miscellaneous global systems Growth rate Growth‐ control supporting property of environment Starvation or Stationary phase inhibition Energy metabolism Presence of Arc system oxygen (aerobic respiration) Anaerobic Presence respiration of electron acceptors other than oxygen Fermentation Absence of usable electron acceptors Table 3.6 Estimates of microbial growth rate, dormancy, and duration of dormancy and survival in nature Habitat Growth rate Laboratory medium Human intestine Mouse Rumen Pond Lake water Ocean Ocean Soil Shallow groundwater Marine surface sediments Shallow subsurface Deep subsurface Deep marine sediments Organism Doubling time (DT) or survival time (ST) E. coli E. coli Salmonella typhimurium Heterotrophic bacteria Heterotrophic bacteria Heterotrophic bacteria Heterotrophic bacteria Autotroph, Prochlorococcus Heterotrophs: α Proteobacteria, rhizobia Heterotrophs: Acidovorax, Commamonas Sulfate reducers 20 min DT 12 h DT 10–24 h DT ~12 h DT 2–10 h DT 10–280 h DT 20–200 h DT ~24 h DT 100 days DT Geobacter Heterotrophs 46 h DT 100 years DT Sulfate reducers, heterotrophs 200–3000 year DT Duration of dormancy or survival Laboratory test tube Clostridium aceticum endospore Lake Vostok beneath Dormant nitrifying the Antarctic ice prokaryotes sheet Gut of extinct bee Heterotroph, spore‐ trapped in amber forming Bacillus Deeply buried clay Dormant heterotrophs and shale Precambrian Heterotroph, endospore salt crystals 15 days DT 1 year DT References Koch, 1971 Koch, 1971 Brock, 1971 Brock, 1971 Brock, 1971 Brock, 1971 Jannasch, 1969 Vaulot et al., 1995 Gray and Williams, 1971 Mailloux and Fuller, 2003 Hoehler and Jorgensen, 2013 Holmes et al., 2013 Phelps et al., 1994; Fredrickson and Onstott, 2001 Hoehler and Jorgensen, 2013 34 years ST Braun et al., 1981 >1.4 × 105 years ST Sowers, 2001; Price and Sowers, 2004 25–40 × 106 years ST Cano and Borucki, 1995 Phelps et al., 1994; Price and Sowers, 2004 Vreeland et al., 2000 100 × 106 years ST 250 × 106 years ST Table 3.7 /2MnO2(s) + 1/2 HCO3− +3/2H+ + e = 1/2MnCO3(s) + H2O FeOOH(S) + HCO3− + 2H+ + e = FeCO3(s) + 2H2O + H+ + e = 1/2CH3OH Manganese reduction Iron reduction Fermentation 1 /4CO2(g) + H+ + e = 1/8CH3COOH + 1/4H2O = Acetogenesis H+ + e + 1/4H2O 1/ 8CO2(g) + 1/ CH (g) 8 4 1/ SO 2− + 9/ H+ + e 4 8 8 = 1/8H2S(g) + 1/2H2O 1/ CH O 2 2 1 Methanogenesis Sulfate reduction /5 NO3− + 6/5H+ + e = 1/10N2 + 3/5H2O Denitrification 1 /4O2 (g) + H+ + e = 1/2H2O 1 Aerobic respiration Process −4.2 −4.13 −3.75 2CH2O → CH3COOH 2CH2O → CO2 + CH4 2CH2O + SO4 + → 2CO2 + H2S + 2H2O 2H+ −22 −23 −25 −27 −42 CH2O + 4FeOOH + 8H+ → CO2 + 4Fe2+ + 7H2O −0.8 3CH2O → CO2 + CH3CH2OH −98 CH2O + 2MnO2 + 4H+ → CO2 + 2Mn2+ + 3H2O +8.9 −3.01 −119 5CH2O + 4NO3− + 4H+ → 5CO2 + 2N2 + 7H2O +12.65 −125 ΔG° (kJ/eq.) CH2O + O2 → CO2 + H2O Heterotrophic reactions +13.75 (PE° ≈ log K) PE regimes Hierarchy of oxidation–reduction processes typical of carbon‐rich environments. When carbonaceous materials (CH2O) are electron donors, individual microorganisms or consortia of populations can mediate electron transfer reactions. See also Figures 3.10 and 3.12. (Modified from Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry: Chemical equilibria and rates in natural waters, 3rd edn. John Wiley and Sons, Inc., New York. Reprinted with permission from John Wiley and Sons, Inc., New York) Table 3.8 Well‐characterized chemolithotrophic and methanotrophic reactions and their respective energy and growth yields. (Modified from Kelly, D.P. and A.P. Wood. 2013. The chemolithotrophic prokaryotes. In: M.W. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schleifer, and E. Stackebrandt (eds), The Prokaryotes, Vol. 2, 3rd edn, pp. 441–456. Springer‐Verlag, New York. With kind permission of Springer Science and Business Media.) Substrate oxidized Reaction ΔG° (kJ/mol substrate) Estimated number of mol ATP synthesized/ mol substrate H2 + 0.5O2 → H2O 5H2 + 2NO3 − + 2H+ → N2 + 6H2O 4H2 + CO2 → CH4 + 2H2O NH4+ + 1.5O2 → NO2 − + H2O+ 2H+ NH4+ + 0.75O2 → 0.5 N2 + 1.5 H2O + H+ NH4+ + NO2− → N2 + 2 H2O H2 H2 H2 NH4+ −237 −241 −35 −272 NH4+ −315 NH4+ −361 NH2OH + O2 → NO2− + H2O + H+ NH2OH −288 2 NO2− + 0.5O2 → NO3− H2S + 0.5O2 → S0 + H2O NO2− −73 1 H2S −209 1? S0 + 1.5O2 + H2O → H2SO4 S0 −519 1–3? S0 + 6/5 NO3− + 2/5 H2O → SO42− + 3/5 N2 + 4/5 H+ S0 +515 S 0 −352 S0 −314 HS− −733 1.5–4? S2O32− S2O32− S4O62− −739 −751 2.3 4–5 −1245 5 S4O62− −1266 8–10 2+ Fe FeS2 Cu2S −47 −1210 −120 0.5 1? + + H2O → 3 NO2− + SO42− +2H+ S0 + 6Fe + 4 H2O → HSO4− + 6Fe2+ + 7H+ HS− + 2O2 → SO42− + H+ + 7H+ S0 3 NO3− 3+ 2H+ + 2O2 + H2O → + 5S2 O32− + 8 NO3− + H2O → 10 SO42− + 2H+ + 4N2 S2O32− 2SO42− S4O62− + 3.5O2 + 3H2O → 4 SO42− + 6H+ 5 S4O62− + 14NO3− + + 8H2O → 20 SO42− + 16H+ + 7N2 + 2H + 0.5O2 → 2Fe + H2O 4FeS2 + 15O2 + 2H2O → 2Fe2(SO4)3 + 2H2SO4 Cu2S + 0.5O2 + H2SO4 → CuS + CuSO4 + H2O (oxidation of Cu+ to Cu2+) CuSe + 0.5O2 + H2SO4 → CuSO4 + Se0 + H2O (oxidation of selenide to selenium) CH4 + 2O2 → CO2 + 2H2O CH4 + 4MnO2 + 7H+ → HCO3‐ + 4Mn2+ + 5H2O CH4 + 8/3 NO2− + 8/3H+ → CO2 + 4/3N2 + 10/3H2O CuSe −124 CH4 CH4 CH4 −871 −556 −309 CH4 + 8Fe(OH)3 + 15H+ → HCO3‐ + 8Fe2+ + 21H2O CH4 −270 CH4 + 8/5 NO3− + 8/5H+ → CO2 + 4/5N2 +14/5H2O CH4 CH4 + SO42− → HCO3− + H2S− + H2O CH4 2Fe2+ 3+ 2–3 <0.25? 1 or 2 1? −153 −20 to −40 0.5?