Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Sec. 4.1 Introduction to Fractions and Mixed Numbers Learning Objectives: 1. Identify the numerator and the denominator of a fraction. 2. Write a fraction to represent parts of figures or real-life data. 3. Graph Fractions on a Number Line. 4. Review division properties for 0 and 1. 5. Write mixed numbers as improper fractions. 6. Write improper fractions as mixed numbers or whole numbers. 7. Key Vocabulary: fractions, numerator, denominator, proper fraction, improper fraction, mixed number. 1. Identify numerator and denominator of a fraction Definition: Fraction—is an expression of the form Example 1. Identify the numerator and the denominator of a fraction. 10 Numerator:________________________ Denominator:_____________________________ 7 -------------------------------------------------------------------------------------------------------------------------------2. Write a fraction to represent parts of figures or real-life data 1. Example 2. Write a fraction to represent the shaded part of each figure. 1. 2. Answer:________________________ Answer:________________________ -------------------------------------------------------------------------------------------------------------------------------Example 3. Writing Fraction from a Real-Life Data Of the 207 students taking Basic Mathematics, 143 are freshman. What fraction of the class is freshman? Answer:________________________ -------------------------------------------------------------------------------------------------------------------------------3. Graph Fractions on a Number Line Example 4. Graph each fraction on a number line. 1. 5 8 1 2. 7 6 -------------------------------------------------------------------------------------------------------------------------------4. Review division properties for 0 and 1 Division Properties: 1. a = a 2. Let a be any whole number, a ≠ 0 , then a = 1 3. 0 = a 4. a = 0 Example 5. Simplify. 1. 0 3 2. −5 5 3. 2 0 Answer:__________________ Answer:__________________ Answer:__________________ -------------------------------------------------------------------------------------------------------------------------------5. Write mixed numbers as improper fractions Definitions: 1. Proper Fraction—is a fraction whose numerator is less than its denominator. Example: 2. Improper Fraction— is a fraction whose numerator is grater than or equal to its denominator. Example: 3. Mixed Number— is an expression of the form a b where a, b and c are any real numbers; c c ≠0. Example: Example 6. Identify each number as a proper fraction, improper fraction, or mixed number. 3 6 1. 2. 5 6 Answer:__________________ Answer:__________________ 3. 15 13 4. Answer:__________________ 2 1 3 Answer:__________________ 2 Example 7. Represent the shaded part of each figure group as both an improper fraction and a mixed number. Answer:__________________ -------------------------------------------------------------------------------------------------------------------------------Steps for Writing a Mixed Number as an Improper Fraction 1. 2. 3. Multiply the denominator of the fraction by the whole number. Add the numeration of the fraction to the product from step 1. Write the sum from step 2 as the numerator of the improper fraction over the original denominator. Example 8. Write each mixed number as an improper fraction. 5 7 8 Answer:__________________ -------------------------------------------------------------------------------------------------------------------------------6. Write Improper Fractions as Mixed numbers or Whole Numbers Steps for Writing Improper Fractions as Mixed numbers or Whole Numbers 1. 2. Divide the denominator into the numerator. The whole number part of the mixed number is the quotient. The fraction part of the mixed number is the remainder over the original denominator. Re mainder original deno min ator Example 9. Write each mixed number as an improper fraction or a whole number. Mixed Number = quotient 1. 51 7 Answer:________________________ 2. 48 4 Answer:________________________ 3 Sec. 4.2 Factors and Simplest Form Learning Objectives: 1. Write a number as a product of prime numbers. 2. Write a fraction in simplest form. 3. Determine whether two fractions are equivalent. 4. Solve problems by writing fractions in simplest form. 5. Key Vocabulary: factor, prime factorization, prime numbers, composite number, simplest form, lowest terms. 1. Write a number as a product of prime numbers Definitions: Prime number—is a natural number greater than 1 that has exactly two different factors, 1and itself. Example of prime numbers: Composite number—is any natural number, other than 1, that is not prime. Note: The natural number 1 is neither prime nor composite. Example 1. Identify each number as prime, composite or neither. 1. 47 Answer:________________________________ 2. 51 Answer:________________________________ 3. 1 Answer:________________________________ -------------------------------------------------------------------------------------------------------------------------------Prime Factorization of a number—is the factorization in which all the factors are prime numbers. Divisibility Tests: A whole number is divisible by • 2 if the last digit is even that is 0, 2, 4, 6, or 8. Example. 536 is divisible by 2 since the last digit is a 6. • 3 if the sum of the digits is divisible by 3. Example. 912 is divisible by 3 since 9+1+2 = 12 is divisible by 3. • 4 if its last two digits are divisible by 4. Example. 744 is divisible by 4 since 44 is divisible by 4. • 5 if the last digit is 0 or 5. Example. 915 is divisible by 5 since the last digit is a 5. • 6 if it’s divisible by 2 and 3. • 9 if the sum of its digits is divisible by 9. 4 Example 2. Write the prime factorization of 480. Use exponents with any repeated factors. Answer:______________________________________ -------------------------------------------------------------------------------------------------------------------------------2. Write a fraction in simplest form Simplest Form of a Fraction—A fraction is written in simplest form or lowest terms when the numerator and the denominator have no common factors other than 1. Writing a Fraction in Simplest Form—to write a fraction in simplest form is to write the prime factorization of the numerator and the denominator and then divide both by all common factors. Example 3. Write in simplest form. 1. 138 42 2. 39x − 51 Answer:______________________________________ Answer:______________________________________ ---------------------------------------------------------------------------------------------------------------------------------3. Determine whether two fractions are equivalent Two ways to Determine Whether Two Fractions Are Equivalent a×c 1. Simplifying: = b×c 2. Cross Product Rule: a c = b d then Example 4. Determine whether the pair of fractions is equivalent by simplifying. 12 21 and 20 35 Answer:_________________________________ 5 Example 5. Determine whether the pair of fractions is equivalent by cross products. 30 15 and 46 24 Answer:________________________________ ---------------------------------------------------------------------------------------------------------------------------------4. Solve problems by writing fractions in simplest form Example 6. Solve. Write each fraction in simplest form. 1. Alicia was scheduled to work 6 hours at the tanning salon. What fraction of Alicia’s shift is represented by 4 hours? Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------2. There are 140 students in a freshman lecture class. If 16 students are absent, what fraction of the students are absent? Answer:_________________________________ 6 Sec. 4.3 Multiplying and Dividing Fractions Learning Objectives: 1. Multiply fractions. 2. Evaluate exponential expressions with fractional bases. 3. Divide fractions. 4. Multiply and divide given fractional replacement values. 5. Solve applications that require multiplication of fractions. 6. Key Vocabulary: reciprocal, ”of”. 1. Multiply fractions Multiplying Fractions if a, b, c and d represent positive whole numbers, then a c ⋅ = b d Example 1. 1. Multiply. Write each answer in simplest form. 2 2 ⋅ 5 7 Answer:_________________________________ 2. 7 9 8 ⋅ ⋅ 3 14 15 Answer:_________________________________ 3. a3 b ⋅ b2 a 2 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------2. Evaluate exponential expressions with fractional bases Example 2. Evaluate. 1. 1 − 3 4 Answer:_________________________________ 2 2. 2 1 ⋅ 7 4 Answer:_________________________________ 7 3. Divide fractions Dividing Fractions: if a, b, c and d represent positive whole numbers, then a b ÷ = c d Example 3. Divide and simplify. Write each answer in simplest form. 1. 7 3 ÷ 8 4 Answer:_________________________________ 2. 5 10 − ÷ 9 9 3. 3y ÷ 5y3 4 Answer:_________________________________ Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------4. Multiply and divide given fractional replacement values Example 4. Given the following replacement values, evaluate x ÷ y when x = 5 5 and y = − 7 9 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------5. Solve applications that require multiplication of fractions Example 5. Solve. Write each answer in simplest form. 3 1. Find of − 63 7 Answer:_________________________________ 2. A bike trail is 27 miles long. Michelle bikes 2 of the trail. How many miles did Michelle bike? 3 Answer:_________________________________ 8 Sec. 4.4 Adding and Subtracting Like Fractions and Least Common Denominator Learning Objectives: 1. Add or subtract like fractions. 2. Add or subtract given fractional replacement values. 3. Solve problems by adding or subtracting like fractions. 4. Find the least common denominator of a list of fractions. 5. Write equivalent fractions. 6. Key Vocabulary: like fractions, unlike fractions, (LCD) least common denominator, (LCM) least common multiple, and equivalent fractions. 1. Add or subtract like fractions Definitions: 1. Like Fractions-are fractions with the same denominators. 2. Unlike Fractions-are fractions with different denominators. Rules: If a, b and c represent nonzero whole number, then 1. a c + = b b Example 1. 1. 2. a c − = b b Add or subtract and simplify. Write each answer in simplest form. 5 3 4 + + 32 32 32 Answer:_________________________________ 2. 9 1 3 5 + − + − 12 12 12 12 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------2. Add or subtract given fractional replacement values 3 1 Example 2. Evaluate x + y if x = and y = − 5 5 Answer:_________________________________ 9 3. Solve problems by adding or subtracting like fractions Example 3. Solve. 1. Find the perimeter of a triangle with sides: 6 9 5 inch, inch, and inch. 25 25 25 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------4. Find the least common denominator(LCD) of a list of fractions The least common denominator (LCD) of a list of fractions—is the smallest positive number divisible by all the denominators in the list. (The least common denominator is also the least common multiple (LCM) of the denominators.) Steps for Finding the LCD of a List of Numbers Using Prime Factorization. 1. Write the prime factorization of each number using exponent. 2. For each different prime factor in Step 1, circle the greatest number or time that factor occurs or the highest exponent in any one factorization. 3. The LCM is the product of the circles factors. Example 4. Find the LCD of 7 1 13 , and using Prime Factorization. 20 24 45 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------5. Write equivalent fractions Example 5. Write the fraction as an equivalent fraction with the given denominator. 12 = 7 105 Answer:_________________________________ 10 Sec. 4.5 Adding and Subtracting Unlike Fractions Learning Objectives: 1. Add or subtract unlike fractions. 2. Write fractions in order. 3. Evaluate expressions given fractional replacement values. 4. Solve problems by adding or subtracting unlike fractions. 5. Key Vocabulary: least common denominator (LCD). 1. Add or subtract unlike fractions Steps to add or subtract Unlike Fractions: 1. Find the LCM of the denominators of the fractions. This number is the Least Common Denominator (LCD). 2. Write each fraction as an equivalent fraction whose denominator is the LCD. 3. Add or subtraction the numerators of the like fractions. 4. Simplify the result in simplest from if possible. Example 1. Add or subtract and simplify if needed. 1. 13 3 11 + + 14 7 28 Answer:_________________________________ 2. 2 1 2 − − 3 4 5 Answer:_________________________________ 3. 5− y 4 Answer:_________________________________ 11 2. Write fractions in order Example 2. Insert < or > to form a true sentence. 1. 2 1 ________________ 3 9 2. 5 4 − ______________ − 6 5 ---------------------------------------------------------------------------------------------------------------------------------3. Evaluate expressions given fractional replacement values Example 3. Evaluate each expression if x = 1. 1 3 and y = − 4 5 x+ y Answer:_________________________________ 2. x⋅ y Answer:_________________________________ 3. x− y Answer:_________________________________ 4. x÷ y Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------4. Solve problems by adding or subtracting unlike fractions Example 4. Solve. 1. Sharon is making matching holiday outfits for her three children. Each outfit required 7 yards. 8 How many yards of material will be needed to make the three outfits? Answer:_________________________________ 12 Sec. 4.6 Complex Fractions, Order of Operations, and Mixed Numbers Learning Objectives: 1. Simplify complex fractions. 2. Review the order of operations. 3. Evaluate expressions given replacement values. 4. Key Vocabulary: complex fraction. 1. Simplify complex fractions Definition: Complex Fraction—is a fraction whose numerator or denominator or both numerator and denominator contain fractions. Property: For any real number a, b, c or d where b ≠ 0, c ≠ 0, d ≠ 0, a b = a ÷ c = a ⋅ d = ad c b d b c bc d Example 1. Simplify each complex fraction. 1. 1 6 2 3 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------1 1 + 6 2 2. 1 3 + 3 4 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------2. Review the order of operations Example 2. Use the order of operations to simplify each expression. 2 3 2 3 1. + − 7 14 7 14 Answer:_________________________________ 13 2 2. 1 2 1 + − 2 3 3 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------3. Evaluate expressions given replacement values 1 3 7 Example 3. Evaluate each expression if x = − , y = and z = 2 5 10 1. x 2 + 2 y Answer:_________________________________ 2. x+ y z Answer:_________________________________ 14 Sec. 4.7 Operations On Mixed Numbers Learning Objectives: 1. Graph positive and negative fractions and mixed numbers. 2. Multiply or divide mixed or whole numbers. 3. Add or subtract mixed numbers. 4. Solve problems containing mixed numbers. 5. Perform operations on negative mixed numbers. 1. Graph positive and negative fractions and mixed numbers Example 1. Graph each list of numbers on a number line. 1 3 1 − 3, − 3 , − 1, , 4 2 4 3 ---------------------------------------------------------------------------------------------------------------------------------2. Multiply or divide mixed or whole numbers Multiplying Fractions and Mixed numbers or Whole Numbers—is to write any mixed or whole numbers as fractions and then multiply as usual. Dividing Fractions and Mixed Numbers or Whole Numbers—is to write the mixed or whole number as a fraction and then divide as usual. Example 2. Multiply. Write each answer in simplest form. 1. 3 2 7 ⋅2 4 3 Answer:_________________________________ 2. 7 ×5 10 Answer:_________________________________ 3. 1 4 ×0 8 Answer:_________________________________ 15 4. 3 3 2 ÷1 5 5 Answer:_________________________________ 5. 8 2 ÷ 13 9 Answer:_________________________________ 6. 1 6 ÷0 3 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------3. Add or subtract mixed numbers Steps to Add or Subtract Mixed Numbers: To add or subtract mixed numbers, add or subtract the fraction parts and then add or subtract the whole number parts. Example 3. Add or subtract and simplify if needed. 1. 1 1 9 + 18 2 3 Answer:_________________________________ 2. 5 2 14 − 9 6 3 Answer:_________________________________ 16 3. 5 1 3 2 −1 + 5 8 6 4 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------4. Solve problems containing mixed numbers 1 5 Example 4. Ray played hockey for 3 hours on Monday and played hockey on Wednesday for 4 2 9 hours. What was the total amount of time Ray played hockey? Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------3 Example 5. John cuts a board 13 feet long from one 20 feet long. How long is the remaining piece? 7 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------5. Perform operations on negative mixed numbers Example 6. Perform the indicated operation. 7 1 1. − 5 ÷ 5 8 4 Answer:_________________________________ 17 2. 1 1 − 8 ⋅ −1 3 5 Answer:_________________________________ 3. 1 5 10 + − 5 9 9 Answer:_________________________________ 4. 3 18 19 − − 5 5 20 Answer:_________________________________ 18 Sec. 4.8 Solving Equations Containing Fractions Learning Objectives: 1. Solve Equations Containing Fractions. 2. Solve Equations by Multiplying by the LCD. 3. Review Adding and Subtracting Fractions. 1. Solve Equations Containing Fractions Example 1. Solve each equation. Check your proposed solution. 3 11 1. 8 x − − 7 x = 5 5 Answer:_________________________________ 2. − 8x = 16 25 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------2. Solve Equations by Multiplying by the LCD Example 2. Solve each equation. 1. x − x = −5 7 Answer:_________________________________ 2. y y 3 = + 2 5 2 Answer:_________________________________ 19 3. y y −2 = −4 5 3 Answer:_________________________________ ---------------------------------------------------------------------------------------------------------------------------------3. Review Adding and Subtracting Fractions Example 3. Add or subtract as indicated. 1. n 4 + 2 7 Answer:_________________________________ 2. 5c c − 8 4 Answer:_________________________________ 20