Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 1005 Exam 1 Review 1. Perform the indicated operations 5 7 5·5+7·2 25 + 14 39 (a) −( + ) = −( ) = −( )=− 2 5 5·2 10 10 (b) 11 1 11 3 11 · 3 33 ÷ = · = = 5 3 5 1 5·1 5 3 1 8 1 8 · 2 − 1 · 3 16 − 3 13 (c) ( )−1 − = − = = = 8 2 3 2 3·2 6 6 (d) 8 4 8 · 4 32 · = = 9 5 9 · 5 45 2. State which of the following properties justifies each statement. Commutative Identity Distributive Associative Inverse (a) 4 + (2 + x) = (4 + 2) + x Associative (b) 3(x + y) = 3x + 3y Distributive (c) x + 0 = x Identity (d) xx−1 = 1 Inverse 3. Which of the following are rational? q { √ 2 3 2 , 11 , −3, π, 3 2 11 , 5 , −3, and q 625 2 9 , 5} √ 625 625 √ 9 = 9 = 25 3 4. Give an example of a rational number which is not an integer. 1 2 Any fraction would be an example of a rational number which is not an integer. 5. Is the product of √ any two numbers always irrational? If no, give an example. √ √ irrational √ No, for example 2 · 8 = 2 · 8 = 16 = 4 √ √ 2 and 8 are irrational, but 4 is rational. 6. Simplify each of the following and write all answers with positive exponents. (a) x−2 y = y x2 (b) (3x4 y−3 )−2 = 3−2 x−8 y6 = (c) ( y6 y6 = 32 x8 9x8 2 2 −2 x2 y3 −2 2 −2 12 x−4 y−6 2 z−2 ) = ( 2 2 z−2 ) = 4 · 3x z ) (3x z ) = ( )(3x )(3x = 2 6 4 −1 −2 2 4 6 2 4 6 2 2z 2 z x y z x y z x y z (d) 6x2 y−2 5yx7 = 30x9 y−1 = 30x9 y 7. Evaluate each expression. √ (a) 3 −27 = −3 Since (−3)3 = −27 4 (b) 64− 3 = (c) 1 1 1 =√ 4= 4= 3 4 256 64 64 1 4 3 √ 3 644 = 44 = 256 8. Write each of the following in simplified radical form. √ √ √ √ √ √ √ √ √ √ √ √ 2x 5 2x 5 20x 2x 5 20x 200x2 100 · 2 · x2 10x 2 2 = √ ·√ = = = = = (a) √ 20x 20x 20x 20x 2 20x 20x 20x p p √ √ √ √ √ √ √ 5 5 5 5 (b) 5 96x7 y15 = 5 96 · x7 · 5 y15 = 5 32 · 3 · x x2 · y3 = 2 5 3 · x x2 · y3 = 2xy3 3x2 √ √ √ √ √ √ √ √ √ (c) 3 5 + 3 40 − 3 135 = 3 5 + 3 8 · 5 − 3 27 · 5 = 3 5 + 2 3 5 − 3 3 5 = 0 √ √ √ √ √ √ 8y y + 2y x 4 y+ x 2y(4 y + x) 2y 2y √ √ √ √ = (d) √ = √ · √ = √ 4 y − x 4 y − x 4 y + x (4 y)2 − ( x)2 16y − x p p p p √ √ √ (e) 3 250y3 − 3 686y3 = 3 125 · 2 · y3 − 3 343 · 2 · y3 = 5y 3 2 − 7y 3 2 = −2y 3 2 r √ √ √ 5 5 5 8 96x8 32 · 3 · x8 2x 3x3 5 96x (f) = √ = √ = √ = 2x 5 5 5 3x3 3x3 3x3 3x3 9. Write each of the following in scientific notation. (a) 4,390 4.39 × 103 (b) 0.0000325 3.25 × 10−5 10. Refer to polynomials (a) x2 + 4x + x + 4, (b) 5x − 1, and (c) x2 + 2x − 5 (a) What is the degree of (a)? 2 (b)? 1 (c)? 2 (b) Add (a) and (c) x2 + 4x + x + 4 + (x2 + 2x − 5) = x2 + 4x + x + 4 + x2 + 2x − 5 = 2x2 + 7x − 1 (c) Multiply (b) and (c) (5x − 1)(x2 + 2x − 5) = 5x3 + 10x2 − 25x − x2 − 2x + 5 = 5x3 + 9x2 − 27x + 5 (d) Subtract (b) from (a) x2 + 4x + x + 4 − (5x − 1) = x2 + 4x + x + 4 − 5x + 1 = x2 + 5 11. Factor each polynomial completely. (a) x2 + 5x + 4 = (x + 4)(x + 1) (b) 3x2 − 14x + 8 = (3x − a)(x − b) = (3x − 2)(x − 4) (c) 4x2 − 20x + 25 = (2x)2 − 2 · 2x · 5 + 52 = (2x − 5)(2x − 5) = (2x − 5)2 (d) 2x4 − 24x3 + 40x2 = 2x2 (x2 − 12x + 20) = 2x2 (x − 10)(x − 2) (e) x3 + y3 = (x + y)(x2 − xy + y2 ) (f) 4x2 − 25 = (2x)2 − 52 = (2x − 5)(2x + 5) (g) x2 y + 2xy2 + x2 y2 = xy(x + 2y + xy) (h) 2xz+xw−6yz−3yw = (2xz+xw)−(6yz+3yw) = x(2z+w)−3y(2z+w) = (x−3y)(2z+w) (i) x3 − 3x2 − 9x + 27 = (x3 − 3x2 ) − (9x − 27) = x2 (x − 3) − 9(x − 3) = (x2 − 9)(x − 3) 12. Perform the indicated operation and simplify. (a) 2x + 8 x2 + 5x + 4 2x + 8 x2 − 9 2(x + 4) (x + 3)(x − 3) 2(x + 3) ÷ = · 2 = · = 2 x−3 x −9 x − 3 x + 5x + 4 x − 3 (x + 4)(x + 1) x+1 1 2 1 x 2 3 x+6 + · + · x+6 x x+6 (b) 3 x = 3 x x 3 = 3x = · = 1 1 4 x 1 + 4x 3x 1 + 4x 3(1 + 4x) +4 + · x x 1 x x (c) (d) 3 4y 3 4y 3 (y − 2) 4y 3(y − 2) − 4y − 2 = − = · − = = y + 2 y − 4 y + 2 (y + 2)(y − 2) y + 2 (y − 2) (y + 2)(y − 2) (y + 2)(y − 2) 3y − 6 − 4y −y − 6 = (y + 2)(y − 2) (y + 2)(y − 2) x2 + 7x + 12 x − 4 (x + 3)(x + 4) x − 4 x + 3 · = · = x2 − 16 2 (x + 4)(x − 4) 2 2