Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7.2 - Trigonometric Integrals 1. Consider integrals of the form: sin n x cos m xdx a. Either n or m is an odd positive integer: n is an odd positive integer: n − 1 is even sin n x cos m xdx sin n−1 x cos m x sin xdx − 1 − cos 2 x n−1/2 cos m xdcos x m is an odd positive integer: m − 1 is even sin n x cos m xdx sin n x cos m−1 x cos xdx sin n x1 − sin 2 x m−1/2 dsin x b. Both n and m are positive even numbers: Use the identities: sin 2 x 1 1 − cos2x, and cos 2 x 1 1 cos2x 2 2 to reduce the power of sin x and cos x. 1 Example: (1) cos 4 x sin 3 x dx (2) sin 4 x cos 5 xdx (1) cos 4 x sin 3 x dx, u cos x, du − sin xdx cos 4 x sin 3 x dx − cos 4 x1 − cos 2 xdcos x − u 4 − u 6 du − 1 u 5 1 u 7 C − 1 cos 5 x 1 cos 7 x C 5 7 5 7 (2) sin 4 x cos 5 xdx sin 4 x1 − sin 2 x dsin x, u sin x, du cos x 2 sin 4 x cos 5 xdx u 4 1 − 2u 2 u 4 du u 4 − 2u 6 u 8 du 1 u5 − 2 u7 1 u9 C 5 7 9 1 sin 5 x − 2 sin 7 x 1 sin 9 x C 5 7 9 2 Example: Evaluate (1) cos 2 x sin 2 xdx (2) cos 2 2x sin 4 2xdx (1) cos 2 x sin 2 xdx 1 1 cos2x 1 1 − cos2xdx 2 2 1 1 − cos 2 2xdx 1 1 − 1 1 cos4x dx 2 4 4 1 1 − 1 cos4x dx 1 x − 1 sin4x C 2 2 8 4 4 3 (2) cos 2 2x sin 4 2xdx 12 1 cos4x 14 1 − cos4x 2 dx 1 1 cos4x1 − 2 cos4x cos 2 4xdx 8 1 1 cos4x − 2 cos4x − 2 cos 2 4x cos 2 4x − cos 3 4xdx 8 1 1 − cos4x − cos 2 4x − cos 3 4xdx 8 1 1 − cos4x − 1 1 cos8x dx − 1 1 − sin 2 4xd 1 sin4x 2 4 2 8 1 8 1 x − 1 sin4x − 1 sin8x − 1 sin4x 1 2 4 16 8 8 1 sin 3 4x 3 C 4 2. Consider the integrals of the form: tan m x sec n xdx a. n is an even positive numbers. tan m x sec n xdx tan m x sec n−2 x sec 2 xdx tan m x1 tan 2 n−2/2 dtan x b. m is an odd positive numbers. tan m x sec n xdx tan m−1 x sec n−1 xtan x sec xdx sec 2 − 1 m−1/2 sec n−1 xdsec x 5 Example: Evaluate (1) tan 4 x sec 4 xdx (2) tan 5 x sec 2 xdx (1) u tan x, du sec 2 xdx, tan 4 x sec 4 xdx tan 4 x1 tan 2 xdtan x u 4 1 u 2 du 1 u 5 1 u 7 C 1 tan 5 x 1 tan 7 x C 5 7 5 7 (2) u sec x, du sec x tan xdx tan 5 x sec 2 xdx sec 2 − 1 2 sec 2 xdsec x u 4 − 2u 2 1u 2 du u 6 − 2u 4 u 2 du 1 u 7 − 2 u 5 1 u 3 C 5 7 3 1 sec 7 x − 2 sec 5 x 1 sec 3 x C 7 5 3 6 Example: Evaluate sec xdx 2 x tan x sec x sec sec x tan x sec xdx sec x sec x tan x dx sec x tan x dx usec xtan x 1 du ln|u | C ln|sec x tan x | C u dusec x tan xsec 2 xdx 7 Example Evaluate sec 3 xdx sec 3 xdx secx sec 2 xdx usecx,dvsec 2 xdx dusecx tanxdx, vtanx secx tanx − secx tan 2 xdx secx tanx − secxsec 2 x − 1dx secx tanx − sec 3 xdx secxdx 2 sec 3 xdx secx tanx − ln|secx tanx | C sec 3 xdx 1 secx tanx − ln|secx tanx | C 2 8 3. Integrals of the forms: (2) sinax sinbxdx (1) sinax cosbxdx cosax cosbxdx Identities: (a) sin A cos B 12 sinA − B sinA B (b) sin A sin B 12 cosA − B − cosA B (c) cos A cos B 12 cosA − B cosA B (3) Example: Evaluate sin4x sin5xdx sin4x sin5xdx 1 cos−x − cos9xdx 2 1 sinx − 1 sin9x C 2 9 9