Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 112 Test 4 Practice Problems Spring 2014 For the given functions f and g , find the indicated composition. 1) f(x) = 12x2 - 9x, g(x) = 18x - 3 Identify the intervals where the function is changing as requested. 9) Constant, increasing, or decreasing (f∘g)(8) 5 y 4 2) f(x) = -4x + 3, (g∘f)(x) 3) f(x) = g(x) = 6x + 4 3 2 1 x - 10 , 3 g(x) = 3x + 10 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 (g∘f)(x) -2 4) f(x) = 4x2 + 6x + 4, (g∘f)(x) -3 g(x) = 6x - 5 -4 -5 Identify the intercepts. 5) Use the graph of the given function to find any relative maxima and relative minima. 10) f(x) = x3 - 3x2 + 1 y 10 5 5 y 4 3 -10 -5 5 10 x 2 1 -5 -5 -4 -3 -2 -1 1 -1 -10 -2 -3 Find and simplify the difference quotient f(x + h) - f(x) , h≠ 0 for the given function. h -4 -5 6) f(x) = x2 + 9x - 8 7) f(x) =3x2 - 5x - 4 8) f(x) = 1 6x 1 2 3 4 5 x 11) f(x) = x3 - 12x + 2 20 20) h(x) = y 25x3 5x2 + 1 16 Find the slant asymptote, if any, of the graph of the rational function. x2 + 6x - 8 21) f(x) = x-7 12 8 4 -5 -4 -3 -2 -1 1 2 3 4 5 x -4 -8 22) f(x) = x2 - 8x + 8 x+8 23) f(x) = 6x2 5x2 + 3 -12 -16 -20 Find the domain of the rational function. Write your answer using interval notation. x+4 12) f(x) = x2 - 25 13) h(x) = Find the center and the radius of the circle. 24) (x + 7)2 + (y + 8)2 = 49 Write the standard form of the equation of the circle with the given center and radius. 25) (7, 8); 9 3x + 5 x2 - 2x -3 26) (0, 3); Find the vertical asymptotes, if any, of the graph of the rational function. x 14) f(x) = x2 + 4 15) h(x) = 16) 2 Complete the square and write the equation in standard form. Then give the center and radius of the circle. 27) x2 + y2 - 4x + 16y + 68 = 9 x+2 x(x + 5) Graph the equation. Give the domain and the radius. 28) x2 + y2 - 4x - 6y + 9 = 0 x - 25 2 x - 8x + 15 10 y 5 x+3 17) h(x) = x2 - 9 -10 5 10 x -5 Find the horizontal asymptote, if any, of the graph of the rational function. 6x2 18) g(x) = 2x2 + 1 19) f(x) = -5 -10 Solve the system by the substitution method. 29) 15x - y = 58 y = x2 - 2 15x 3x2 + 1 2 30) x + y = 6 y = x2 - 12x + 36 37) x2 + y2 ≤ 16 10 31) xy = 72 x + y = -17 y 5 Solve the system by the addition method. 32) x2 + y2 = 9 -10 -5 5 10 x 5 10 x 5 10 x -5 x2 - y2 = 9 -10 33) x2 + y2 = 25 25x2 + 16y2 = 400 38) x2 + y2 > 49 34) x2 + y2 - 8x - 8y + 31 = 0 x2 - y2 - 8x + 8y - 1 = 0 10 y 5 Graph the inequality. 35) x - y > -4 -10 -5 y 10 -5 -10 -10 10 39) y ≤ x2 + 7 x 10 5 -10 -10 36) x > -5 -5 -5 y 10 -10 5 -10 -5 y 5 10 x -5 -10 3 40) (x - 5)2 + (y - 4)2 > 4 43) x2 + y2 ≤ 49 7x + 5y ≤ 35 y 10 y 10 5 5 -10 -5 5 10 x -10 -5 5 10 x -5 -5 -10 -10 Graph the solution set of the system of inequalities or indicate that the system has no solution. 41) 3x - y ≤ -3 x + 4y ≥ -4 44) x2 + y2 ≤ 64 x2 + y2 ≥ 49 y y 10 6 8 4 6 2 4 2 -8 -6 -4 -2 2 4 6 8x -2 -10 -8 -6 -4 -2 -2 2 4 6 8 10 x -4 -4 -6 -6 -8 -10 45) x2 + y2 ≤ 25 y - x2 > 0 42) -1 ≤ y < 4 y y 10 10 8 6 5 4 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 -10 x -5 5 10 x -5 -4 -6 -8 -10 -10 Write the augmented matrix for the system of equations. 46) -2x + 5y + 9z = 52 3x + 9y + 8z = 97 8x + 6y + 8z = 88 4 47) 6x + 6z = 90 4y + 7z = 88 4x + 3y + 2z = 68 Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. 48) 2 6 4 -2 6 0 3 4 8 5 0 2 49) 8 -1 5 0 1 7 0 4 0 9 5 1 0 -10 0 3 9 0 -4 -7 Solve the system of equations using matrices. Use Gaussian elimination with back-substitution. 50) x + y + z = -1 x - y + 5z = 5 5x + y + z = 19 51) x - y + 3z = -2 5x + z = 1 x + 4y + z = 21 Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. 52) 5x + 2y + z = -11 2x - 3y - z = 17 7x - y = 12 53) 54) 4x - y + 3z = 12 x + 4y + 6z = -32 5x + 3y + 9z = 20 x+ y+z = 9 2x - 3y + 4z = 7 x - 4y + 3z = -2 5 Answer Key Testname: MTH 112 TEST 4 PRACTICE PROBLEMS SPRING 2014 1) 237,303 2) -24x + 22 3) x 4) 24x2 + 36x + 19 33) {(0, 5), (0, -5)} 34) {(5, 4), (3, 4)} 35) y 10 5) x-intercepts:(6, 0), (-6, 0), y-intercepts: (0, 7), (0, -7) 6) 2x + h + 9 7) 6x +3 h - 5 -1 8) 6x (x + h) -10 9) constant: (-1, 1) increasing: (-2, -1) ∪ (3, ∞) decreasing: (1, 3) 10) maximum: (0, 1); minimum: (2, -3) 11) minimum: (2, -14); maximum: (-2, 18) 12) (-∞, -5) ∪ (-5, 5) ∪ (5, ∞) 13) (-∞, -1) ∪ (-1, 3) ∪ (3, ∞) 14) no vertical asymptote 15) x = 0 and x = -5 16) x = 5, x = 3 17) x = 3 18) y = 3 19) y = 0 20) no horizontal asymptote 21) y = x + 13 22) y = x - 16 23) no slant asymptote 24) (-7, -8), r = 7 25) (x - 7)2 + (y - 8)2 = 81 10 x 10 x -10 36) y 10 5 -10 -5 5 -5 -10 37) 26) x2 + (y - 3)2 = 2 27) (x - 2)2 + (x + 8)2 = 9 10 (2, -8), r = 3 y 5 28) 10 y -10 -5 5 -5 5 -10 -10 -5 5 10 x -5 -10 domain:[0, 4] range: [1, 5] 29) {(8, 62), (7, 47)} 30) {(5, 1), (6, 0)} 31) {(-8, -9), (-9, -8)} 32) {(3, 0), (-3, 0)} 6 10 x Answer Key Testname: MTH 112 TEST 4 PRACTICE PROBLEMS SPRING 2014 38) 42) y 10 y 12 10 8 6 5 4 2 -10 -5 10 x 5 -10 -8 -6 -4 -2-2 -5 -4 -10 -6 -8 2 4 6 8 10 x 10 x -10 39) -12 y 10 43) y 10 5 5 -10 -5 10 x 5 -5 -10 -5 5 -5 -10 y -10 10 44) 5 y 6 -10 -5 5 10 x 4 2 -5 -8 -6 -4 -2 2 -2 -10 40) 41) -4 -6 y 10 8 6 4 2 -10 -8 -6 -4 -2 -2 2 4 6 8 10 x -4 -6 -8 -10 7 4 6 8x Answer Key Testname: MTH 112 TEST 4 PRACTICE PROBLEMS SPRING 2014 y 10 5 -10 -5 5 10 x -5 -10 45) 46) -2 5 9 52 3 9 8 97 8 6 8 88 47) 6 0 6 90 0 4 7 88 4 3 2 68 48) 2x + 6y + 4z = -2 6x + 3z = 4 8x + 5y = 2 49) 8x + y + 9w = 5 -x + 7y + z = -10 5x + 3w = 9 4y - 4w = -7 50) {(5, -5, -1)} 51) {(0, 5, 1)} 52) ∅ 53) ∅ 54) infinitely many solutions 7z 34 2z 11 {(, , z)} + + 5 5 5 5 8