Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 7.4 Inverse Trigonometric Functions I Note: A calculator is helpful on some exercises. Bring one to class for this lecture. OBJECTIVE 1: Sine Function Understanding and Finding the Exact and Approximate Values of the Inverse Sketch a graph of y = sin x (draw at least two cycles) € • The domain of y = sin x is __________________. • Is the sine function 1-1? Why? Or why not?______________________ By restricting€the domain of y = sin x , − π π 2 ≤x≤ π 2 , the function is now 1-1 and has an inverse function. π Sketch a graph of y = sin x , − ≤ x ≤ , plotting end points and several other points. 2 2 € € € € Interchange x’s and y’s from the graph above. Are the points on the graph of the inverse function to y = sin x , − π 2 ≤x≤ π 2 below? ! € € Definition( Inverse(Sine(Function( The!inverse(sine(function,!denoted!as! y = sin −1 x ,!is!the!inverse!of! y = sin x , − π 2 ≤x≤ π 2 .! ! The!domain!of! y = sin −1 x !is −1 ≤ x ≤ 1 and!the!range!is! − π 2 ≤ y≤ π 2 .! !!!!!!!!!!!!!!(Note!that!an!alternative!notation!for! sin −1 x !is arcsin x .)! CAUTION:((Do(not(confuse(the(notation( sin −1 x (with( ( sin x ) The(negative(1(is(not(an(exponent!((Thus,( sin −1 x ≠ ( 1 .( sin x −1 = 1 = csc x .((( sin x Steps(for(Determining(the(Exact(Value(of( sin −1 x ! Step!1.! If!x"is!in!the!interval! [ −1,1] ,!then!the!value!of! sin −1 x must!be!an!angle!in!the!interval! !$ − π2 , π2 "% .! Step!2.! Let! sin −1 x = θ !such!that! sin θ = x .! Step!3.! If! sin θ = 0 ,!then! θ = 0 !and!the!terminal!side!of!angle! θ !lies!on!the!positive!x#axis.!( If! sin θ > 0 ,!then! 0 < θ ≤ ! π !and!the!terminal!side!of!angle! θ ! 2 !!lies!in!Quadrant!I!or!on!the!positive!y#axis.! ! ! ! If! sin θ < 0 ,!then! − ! ! π 2 ≤ θ < 0 and!the!terminal!side!of!angle θ ! !lies!in!Quadrant!IV!or!on!the!negative!y#axis.!! ! ! ! Step!4.! Use!your!knowledge!of!the!two!special!right!triangles!and!the!graphs!of!the!trigonometric!functions,!!to!!! !!!!!!!!!!!!!!!determine!the!angle!in!the!correct!quadrant!whose!sine!is!x.!!!!!!!!!!!!!!!!!!!!!!! " 3% 7.4.2 Determine the exact value of the expression sin −1 $ ' . # 2 & OBJECTIVE 2: Cosine Function Understanding and Finding the Exact and Approximate Values of the Inverse Sketch a graph of y = cos x (draw at least two cycles) € • • The domain of y = cos x is __________________. Is the cosine function 1-1? Why? Or why not?______________________ € By restricting the domain of y = cos x , 0 ≤ x ≤ π , the function is now 1-1 and has an inverse function. Sketch a graph of y = cos x , 0 ≤ x ≤ π , plotting end points and several other points. € € € € Interchange x’s and y’s from the graph above. Are the points on the graph of the inverse function to y = cos x , 0 ≤ x ≤ π , below? € € Definition( Inverse(Cosine(Function( The!inverse(cosine(function,!denoted!as! y = cos −1 x ,!! !!!!!!!!!!!!!!! is!the!inverse!of y = cos x , 0 ≤ x ≤ π .!! ! ! The!domain!of! y = cos −1 x !is −1 ≤ x ≤ 1 and!the!range!is!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 0 ≤ y ≤ π .( (Note!that!an!alternative!notation!for! cos −1 x !is arccos x .)! ! ! ! Steps(for(Determining(the(Exact(Value(of( cos −1 x ( Step(1.! If!x"is!in!the!interval! [ −1,1] ,!then!the!value!of! cos −1 x must!be!an!angle!in!the!interval! [0, π ] .! Step(2.! Let! cos −1 x = θ !such!that! cos θ = x .! ! ! ! ! ! ! Step(3.! If!! cos θ = 0 ,!then! θ = π 2 !and!the!terminal!side!of!!angle θ !lies!on!the!positive!y#axis.! If! cos θ > 0 ,!then! 0 ≤ θ < π !and!the!terminal!side!of!angle! θ ! 2 lies!in!Quadrant!I!!or!on!the!positive!x#axis.!! ! ! If! cos θ < 0 ,!then! π 2 < θ ≤ π and!the!terminal!side!of!angle! θ ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!lies!in!Quadrant!II!or!on!the!negative!x#axis.!! ! ! ! Step(4.! Use!your!knowledge!of!the!two!special!right!triangles!and!the!graphs!of!the!trigonometric!functions!to! determine!the!angle!in!the!correct!quadrant!whose!cosine!is!x.!!! " 1 % 7.4.8 Determine the exact value of the expression cos−1 $ − '. # 2& OBJECTIVE 3: Tangent Function Understanding and Finding the Exact and Approximate Values of the Inverse Sketch a graph of y = tan x (draw at least two cycles) € • • The domain of y = tan x is __________________. Is the tangent function 1-1? Why? Or why not?______________________ By restricting€the domain of y = tan x , − function. € € π 2 <x< π 2 , the function is now 1-1 and has an inverse π and 2 π π π π π correspond to horizontal asymptotes y = − and y = of x = of the graph y = tan x , − < x < 2 2 2 2 2 π π € graph. the graph of the inverse function to y = tan x , − < x < . Draw this inverse 2 2 Interchange x’s and y’s from the graph of the principal cycle. The vertical asymptotes x = − € ! € € € € € Definition( Inverse(Tangent(Function( € The!inverse(tangent(function,!denoted!as! y = tan−1 x,!is!the!inverse!of! y = tan x , − π 2 <x< π .! 2 € ! € y = tan −1 x The!domain!of! € y = tan−1 x!is (−∞,∞)and! the!range!is! − π 2 <x< π 2 .! € € !!!!!!!!!!!!!!(Note!that!an!alternative!notation!for! tan−1 x !is! arctan x .)! (€ € ( € Steps(for(Determining(the(Exact(Value(of( tan −1 x ( Step(1.! !!!!!The!value!of! tan −1 x !must!be!an!angle!in!the!interval! − π2 , π2 .! ( ) Step(2.! !!!!!Let! tan −1 x = θ !such!that! tan θ = x .! Step(3.! !!!!!If! tan θ = 0 ,!then! θ = 0 and!the!terminal!side!of!angle! θ ! ! ! lies!on!the!positive!x#axis.! ! !!!!!If! tan θ > 0 ,!then! 0 < θ < ! !!!!!!!!!!!!!!lies!in!Quadrant!I.! π 2 and!the!terminal!side!of!angle! θ ! !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! π ! !!!!!If! tan θ < 0 ,!then! − ! !!!!!!!!!!!!!!!!!lies!in!Quadrant!IV.!! ! 2 < θ < 0 and!the!terminal!side!of!angle! θ ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Step(4.! !!!!!Use!your!knowledge!of!the!two!special!right!triangles!and!the!graphs!of!the!trigonometric! functions!to!determine!the!angle!in!the!correct!quadrant!whose!tangent!is!x.!!! ( ( " 1 % 7.4.13 Determine the exact value of the expression tan −1 $ ' . # 3&