Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Liceul Internaţional de Informatică Bucureşti
Societatea de Ştiinţe Matematice
Stelele Matematicii 2015, Juniori
Problema 1. Fie a, b, c trei numere reale pozitive, astfel ı̂ncât
ab + bc + ca + 2abc = 1.
Arătaţi că
√
a+
√
b+
√
c ≥ 2 şi determinaţi cazurile de egalitate.
Problema 2. Arătaţi că există o infinitate de numere naturale impare
m1 < m2 < · · · şi o infinitate de numere naturale n1 < n2 < · · · , astfel
ı̂ncât mk să fie relativ prim cu nk şi m4k − 2n4k să fie pătrat perfect, oricare
ar fi indicele k.
Problema 3. Fie ABCD un patrulater inscriptibil, fie γ cercul circumscris
acestui patrulater şi fie M mijlocul arcului AB al lui γ, care nu conţine
punctele C şi D. Dreapta care trece prin M şi prin punctul de intersecţie
a diagonalelor AC şi BD, intersectează a doua oară cercul γ ı̂n punctul N .
Fie P şi Q două puncte situate pe latura CD, astfel ı̂ncât ∠AQD = ∠DAP
şi ∠BP C = ∠CBQ. Arătaţi că cercul circumscris triunghiului N P Q este
tangent cercului γ.
Problema 4. Fie n un număr natural mai mare sau egal cu 5 şi fie
√
{a1 , a2 , . . . , an } = {1, 2, . . . , n}. Arătaţi că cel puţin b nc + 1 dintre resturile ı̂mpărţirii la n a numerelor a1 , a1 + a2 , . . ., a1 + a2 + · · · + an , sunt
√
√
distincte; b nc este cel mai mare număr ı̂ntreg, mai mic sau egal cu n.
Liceul Internaţional de Informatică Bucureşti
Societatea de Ştiinţe Matematice
Stars of Mathematics 2015, Junior Level — Solutions
Problem 1.
non-negative real numbers a, b, c such that ab + bc + ca + 2abc = 1, show
√ Given
√
√
that a + b + c ≥ 2 and determine the cases of equality.
Flavian Georgescu
Solution. The condition in the statement
√ is equivalent to 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2.
If t is a non-negative real number, then t ≥ 2t/(1 + t) = 2 − 2/(1 + t), and equality holds if
and only if t is either 0 or 1. Consequently,
√
√
√
a + b + c ≥ 2 − 2/(1 + a) + 2 − 2/(1 + b) + 2 − 2/(1 + c)
= 6 − 2(1/(1 + a) + 1/(1 + b) + 1/(1 + c)) = 2.
By the preceding, equality holds if and only if one of the numbers a, b, c is 0, and the other
two are both equal to 1.
Remark.
P 1,√and a1 , . . ., an are non-negative real numbers such
P If n is an integer greater than
that ni=1 1/(1 + ai ) = n − 1, then ni=1 ai ≥ 2, and equality holds if and only if n − 2 of
the ai vanish, and the other two are both equal to 1. The proof goes along the same lines.
Alternatively, but equivalently, the condition on the ai reads
n
X
(k − 1)
k=1
X
ai1 · · · aik = 1.
1≤i1 <···<ik ≤n
Problem 2. Show that there are positive odd integers m1 < m2 < · · · and positive integers
n1 < n2 < · · · such that mk and nk are relatively prime, and m4k − 2n4k is a perfect square for
each index k.
Folklore
Solution. Let m and n be relatively prime positive integers such that m is odd and m4 − 2n4
is a perfect square, e.g., m = 3 and n = 2. Write `2 = m4 − 2n4 , so `4 = (m4 − 2n4 )2 =
(m4 + 2n4 )2 − 8m4 n4 , and `4 − 8m4 n4 − (m4 + 2n4 )2 = −16m4 n4 = −(2mn)4 . Multiply the
latter by `4 − 8m4 n4 + (m4 + 2n4 )2 = 2`4 to get
`4 − 8m4 n4 + (m4 + 2n4 )2 `4 − 8m4 n4 − (m4 + 2n4 )2 = −2 · (2`mn)4 ;
that is, (`4 − 8m4 n4 )2 − (m4 + 2n4 )4 = −2 · (2`mn)4 . Letting m0 = m4 + 2n4 and n0 = 2`mn,
clearly m0 > m, m0 is odd, n0 > n, the difference m04 − 2n04 is a perfect square, and it is readily
checked that m0 and n0 are relatively prime. The conclusion follows.
Problem 3. Let ABCD be a cyclic quadrangle, let γ be its circumcircle, and let M be the
midpoint of the arc AB of γ, not containing the vertices C and D. The line through M and
the point where the diagonals AC and BD cross one another, crosses γ again at N . Let P
and Q be points on the side CD such that ∠AQD = ∠DAP and ∠BP C = ∠CBQ. Show
that the circles N P Q and γ are tangent to one another.
Flavian Georgescu
Solution. Since the lines AC, BD and M N are concurrent, (AM/M B)(BC/CN )(N D/DA) =
1, by Ceva’s theorem in trigonometric form along with the sine law in the triangle ABN ; and
since M A = M B, it follows that CN/DN = BC/AD.
Next, the triangles ADP and QDA are similar, so AD2 = DP · DQ. Similarly, BC 2 =
CP · CQ, so, by the preceding, (CN/DN )2 = (CP/DP )(CQ/DQ).
By a well-known theorem of Steiner, the lines N P and N Q are isogonal with respect to
the lines N C and N D; that is, the angles CN P and DN Q are congruent.
Finally, if X is a point on the tangent t at N to γ, other than N , then a standard angle
chase shows the angle QN X congruent to one of the angles CP N , N P Q, depending on which
side of N the point X lies on t, so t is also tangent at N to the circle N P Q. The conclusion
follows.
Problem 4. Given an integer n ≥ 3 and a permutation a1 , a2 , . . ., an of the first n positive
√
integers, show that at least n distinct residue classes modulo n occur in the list a1 , a1 + a2 ,
. . ., a1 + a2 + · · · + an .
Amer. Math. Monthly
Solution. Let rk be the remainder of the partial sum a1 + a2 + · · · + ak upon division by
n, and let m be the number of distinct residues in the list r1 , r2 , . . ., rn . Since there are
m distinct integers in the list, the number of ordered pairs with different entries that can
be formed from these m integers does not exceed m(m − 1). On the other hand, of the
n − 1 distinct ordered pairs (rk , rk+1 ), k = 1, 2, . . . , n − 1, at√most one has equal entries, so
√
m(m − 1) ≥ (n − 1) − 1 = n − 2. Consequently, m ≥ (1 + 4n − 7)/2 ≥ n if n ≥ 4, the
latter inequality being strict if n ≥ 5. If n = 4, and a1 = 2,√a2 = 4, a3 = 3 and a4 = 1, then
√
the corresponding list of residues is 2, 2, 1, 2, so m = 2 = √
4 = n. Finally, if n = 3, then
every permutation produces a list consisting of√exactly 2 > 3 distinct residues. (If n = 2,
√
the identity produces the list 1, 1, so m = 1 < 2 = n.)
2