Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math107 – Questions to try (Ch. 7) – NEW MATERIAL for FINAL EXAM 1. Evaluate each of the following EXACTLY (No Decimals). Give any angles in radians. 3 = ____________ 3 (a) arctan − (d) arccos (−1) = __________ (b) arcsin − 2 = ____________ 2 (c) arctan 0 = __________ (e) arccos ( − 3 ) = _____________ 2 (f) tan(arccos 1 ) = _________ 2 (g) arcsin(sin π ) = ____________ 3 (h) cos(arccos 6 ) = ____________ 7 (i) csc(arcsin 6 ) = _________ 5 (j) arctan (tan 9π ) = ____________ (k) sec(arcsin 2 ) = ____________ 2 (l) cot(arctan 15 ) = _________ 12 5π ) = ____________ 6 (n) arcsin(cos 4π ) = ____________ 3 (m) arccos (sin (o) tan(arcsin 1) = ____________ 2. Draw a triangle for each of the following expressions. Write an algebraic expression or evaluate accordingly. (a) sin(arccos 2x) = ________________________ (b) sec(arctan 9 ) = ________________________ 2 5 ) = ________________________ 13 (d) cot(arccos x ) = ________________________ 9 (c) tan(arcsin 1 3. Solve the right triangles. Solve for any angles in radians and degrees. Round angles to two decimal places. c = __________________ β (A) 5 3 3 θ = __________________ θ β = __________________ 5 a = __________________ β (B) 36 θ = __________________ β = __________________ θ 18 2 (C) β b = __________________ 6 2 θ = __________________ θ β = __________________ (D) β x = __________________ y = __________________ 10 y β = __________________ 32° x 2 4. Find all θ in the interval 0° ≤ θ ≤ 360° for each of the following. Round to nearest whole angle. Give answers in degrees. (a) sin θ = .7071067812 Reference Angle: __________ Quadrants: __________ θ = _________________ (b) tan θ = −.4663076582 Reference Angle: __________ Quadrants: ____________ θ = _________________ (c) cot θ = 1.732050808 Reference Angle: __________ Quadrants: ____________ θ = _________________ (d) cos θ = −.6427876097 Reference Angle: __________ Quadrants: ____________ θ = __________________ (e) csc θ = −1.624269245 Reference Angle: __________ Quadrants: ____________ θ = __________________ (f) cos θ = −1 θ = ______________________ (g) csc θ = undefined θ = ______________________ (h) cot θ = 0 θ = ______________________ 5. Find all θ for each of the following. Give answers in degrees. (a) sin θ = .7071067812 θ = _____________________________ (a) θ = arcsin (.7071067812) θ = ____________ (b) tan θ = −.4663076582 θ = _____________________________ (b) θ = arctan (−.4663076582) θ = ____________ (c) cot θ = 1.732050808 θ = _____________________________ (c) θ = arctan (.577350269) θ = ____________ (d) cos θ = −.6427876097 θ = _____________________________ (d) θ = arccos (−.6427876097) θ = ____________ (e) csc θ = −1.624269245 θ = _____________________________ (e) θ = arcsin (−.6156614755) θ = ____________ 3 6. Using trigonometric identities, show that the following are true statements by manipulating only one side of the equation. SHOW ALL STEPS NEATLY AND CLEARLY FOR CREDIT. The second your work is hard to follow, it is WRONG. (a) (csc β + cot β )(csc β − cot β ) = 1 (d) sin2 θ − cos2 θ = 2sin2 θ − 1 π sec 2 β (g) cot − β − = − cot β 2 tan β (i) cscψ − cot ψ = sin ψ 1 + cosψ π (c) sin 2 α + sin 2 − α = 1 2 (b) cos θ (sec θ − cos θ) = sin2 θ (e) sin 4 α − cos 4 α = sin 2 α − cos 2 α (h) (f) cot (− φ ) cos(− φ ) + sin (− φ ) = − csc φ 1 1 + =1 sin x + 1 csc x + 1 (j) tan x + cos x = sec x 1 + sin x 4 7. For the following right triangle, find sin (2θ) and cos (2θ). θ 4 sin (2θ) = ______________ 1 cos (2θ) = ______________ 8. For the right triangle above, find tan (2θ). First use the Double Angle formula, then use sin (2θ) and cos (2θ). tan (2θ) = ______________ tan (2θ) = ______________ 2 9. For the triangle above, verify that sin 10. Given that sin x =− θ + cos2 θ = 1. Then, verify that sin2 (2θ) + cos2 (2θ) = 1. 24 in Quadrant IV, find csc(2x), sec (2x), and cot (2x). 25 csc (2x) = ______________ sec (2x) = ______________ cot (2x) = ______________ 5 11. Let csc θ = 61 5 and sec β = , where θ and β are in Quadrant I. 60 3 (a) Find sin (θ + β) and cos (θ + β). Show your work. sin (θ + β) = __________ cos (θ + β) = __________ 2 (b) Verify that sin (θ + β) + cos2 (θ + β) = 1. (c) Find sin (θ − β) and cos (θ− β). Show your work. sin (θ− β) = __________ cos (θ− β) = __________ 2 (d) Verify that sin (θ − β) + cos2 (θ − β) = 1. (e) Find tan (θ + β) by first using the Addition Formula, then by using sin (θ + β) and cos (θ + β). (f) Find tan (θ − β) by first using the Subtraction Formula, then by using sin (θ − β) and cos (θ − β). 6 12. Evaluate each of the following completely and exactly without a calculator. (No Decimals) Show your work. (a) cos 11π = ___________ 12 π π + tan 12 4 = ______________ (b) π π 1 − tan tan 12 4 tan (c) sin (d) 13π = ___________ 12 tan 64 ° − tan 4° = ______________ 1 + tan 64° tan 4° (e) tan 19π − = ___________ 12 (f) sin 36° cos 9° + cos 36° sin 9° (g) cos = ______________ 5π π 5π π cos + sin sin = ______________ 6 3 6 3 13. Evaluate each of the following using the Addition and Subtraction formulas. (a) sin π − x = ___________ 2 (b) cos π − x = ___________ 2 (c) tan π − x = ___________ 2 7 14. Find all solutions of the following equations. Give answers in radians. BOX YOUR ANSWERS. (a) tan4 x – 4tan2 x +3 = 0 (b) sin (2x) – sin x = 0 (c) 2sin2 (5x) = 2 + cos (5x) (d) cot x csc x = cot x (e) sin x = cos x (f) −2 + 2cos x + cos (2x) = 0 8 x (g) 2 sin + 3 = 0 7 (h) 2tan x – 4 = sec2 x – 8 x π x π (k) 6 cos 2 + − 7 cos + + 2 = 0 3 4 3 4 (i) sin x + 1= cos x (j) tan (2x – 6) – 1= 0 π π (l) 3 sec x − − 2 2 sin x − + 2 = 0 6 6 9