Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
5 Analytic Trigonometry Using Fundamental Identities Section 5.1 [] You should know the fundamental trigonometric identities. (a) Reciprocal Identities 1 1 sin u csc u csc u sin u 1 1 COS /,/ -- seg/~ = ~ sec/~ cos/A 1 sin u tanu = cot u cos u 1 cos u cotu = ~ tan u sin u (b) Pythagorean Identities Sin2u + cos2u = 1 1 + tan2 u = sec2 u 1 +cot2u=csczu (c) Cofunction Identities sin -- /, = cos/~ cos - u = sin u tan - u = cot u cot - u = tan u sec -- /,~ "-- CSC /g CSC -- R = sec /A (d) Negative Angle Identifies csc(-x) = -csc x sin(-x) = -sin x sec(-x) = sec x cos(-x) = cos x cot(-x) = -cot x tan(-x) = -tan x [] You should be able to use these fundamental identities to find function values. [] You should be able to convert trigonometric expressions to equivalent forms by using the fundamental identities. You should be able to check your answers with a graphing utility. 244 245 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests Solutions to Odd-Numbered Exercises 3. secO=~, sinO=- ==> Oisin 2 Quadrant IV. tan x - sinx =m2 = ~/~ 1 2 cos 0 tan 0 cot 0 - 1 1 1 42 see 0 - 42 - 2 sin0 -,/~/2 _ _ 1 cos 0 - 42/2/2 1 tan 0 COS X 7 -25 5. tan x = ~-~, sec x - 24 ~ x is in Quadrant III 24 7 cot X = -- 24 25 COS X ~ 1 CSC X "" - 7. sec 4) = -!, sin 4) cos 4) = - 1 tan ~b = 0 cot 4) is undefined. csc 4) is undefined. 25 -- 7 2 2 9. sin(-x)=-sinx= 3 ==> sinx=-~ 2 sinx=~, tanx= 11. tan 0 = 4, sin 0 < 0 =, 0 is in Quadrant III secO-- -~/tan20+ 1 = -~ 1 ./Tq 5 ==> x is in Quadrant II. cos 0 = --~ = 17 1 cot 0 = 4 sin 0 = -~/i - cos2 0 = - CSC x -- 13 -sin x 2 13. sin0=-l, cot0=0 =:> 0=3¢r 2 zO=O cosO= ~/1-sin sec 0 is undefined. tan 0 is undefined. csc 0 = -1 CSC 0 = 1 1 17 4 18. By looking at the basic graphs of sin x and "/r- csc x, we see that as x --> ~ , sin x --> 1 and csc x --> 1. 4 246 PART l: Solutions to Odd-Numbered Exercises and Practice Tests 17. By looking at the basic ~aphs of tan x and cot x, we see that as x ----> ~- , tan x ----> ~ and cot x ---> 0. 1 19. csc x sin x sin = ~x sin x = 1. Matches (d) 21. tan2 x - sec2 x -- tan2 x - (tan2 x + 1) = - 1 The expression is matched with (a). 23. sin(-x)- --sin x tan x cos(-x) cos x The expression is matched with (e). 25. cos x csc x - cos x . = cot x. Matches (b) sin x 27. sec4 x - tan4 x = (sec2x + tan2 x)(sec2 x - tan2 x) = (sec2x + tanEx)(1) = sec2x + tan2x The expression is matched with (f). 29. sec2 x -- 1 tan2 x sin2 x -sin2 x sin2 x cos2 x 1 -- sec2 x sin2 x cos x . 31. cot x sin x = ~ sin x = cos x sin x The expression is matched with (e). 33. sin ¢(csc ¢ - sin ¢) = sin csc - sin2 1 = sin 4’ ° ~- sin2 sin ¢ = 1 - sin2 35. cotx csc x cosx/sinx l/sin x cos x sin x sin x = COS X 1 = COS2 ¢ 37. sec a 1 sin a (sin a) cot a tan a cos a 1 (sin cos a \ si-~ / sin(-x) 39. -- COS X sin x COS X = -tan x =1 ~ = COt X -x cscx=cosx °sinx sin ¢ 1 1 45. tan csc .... sec cos¢ sine cos 43, cosz y 1 - sin y 1 - sinz y 1 - sin y (1 + sin y)(1 - sin y) 1 - sin y = 1 +siny cos~0 cos00sin cos00sin + 47.csc ~ +0sin 0 = cot 0 + cot 0 = 2 cot 0 49. 1 sin2 0 1 -- cos 0 -- sin2 0 cos2 0 -- cos 0 = 1 - cos 0 1 - cos 0 1 - cos 0 cos 0(cos 0 - 1) = --COS 0 1 - cos 0 247 cot(-O) csc 0 PART l: Solutions to Odd-Numbered Exercises and Practice Tests cos(-O) sin 0 - cos_~_O sin 0 = -cos 0 ~sin 0 sin(-O) 53. sin O + cos 0 cot 0 = sin 0 + cos 0 c.os 0 sin 0 cos 0 cos 0 1 + sin 0 55. 1-sinO= 1-sinO" l+sinO sin2 0 + cos2 0 sin 0 cos 0(1 + sin O) 1 - sin~ 0 1 sin 0 cos 0(1 + sin O) cos~ 0 = csc 0 1 + sin 0 cos 0 = sec 0 + tan 0 sin 0 cos 0 57. c-~cO + ~sec 0 = sin2 0 + COS2 0 -" 1 1 + 2cos 0 + cos20 + sin2 0 sin 0(1 + cos O) 1 + cos 0 sin 0 + sin 0 1 + cos 0 2 + 2 cos 0 sin 0(1 + cos O) _._ - 2(1 + cos O) sin 0(1 ÷ cos O) 2 - 2 csc 0 sin 0 61. lnlcsc O[ = lnlsi~O[ = In [sin 0[-1 = -ln[sin O[ 63. COt2 x -- cot~ x cos2 x = cot: x(1 - cos2 x) = c°s~---~x2sin2 x = COS2 x sin x 65; sin2 x sec2 x - sin2 x sin2 x(sec2 x - 1) = sin2 x tan2 x 67. tanax + 2 tan2x + 1 = (tan~x + 1)~ = (sec x) = see4 x 69. sin’~ x - cos4 x = (sin2 x + cos2 x)(sin2 x - cos2 x)71. (sin x + cos x)2 = sin2x + 2 sin x cos x + cos2x = (sin2 x + cos: x) + 2 sin x cos x = (1)(sin~ x - cos~ x) = l+2sinxcosx = sin2 x - cos~ x 73. (sec x + 1)(sec x - 1) = sec2 x - 1 = tan~ x 248 75. PART I: Solutions to Odd-Numbered Exercises and Practice Tests 1 1 1-cosx+ l+cosx + 77. + 1 + cos x 1 - cos x (1 + cos x)(1 - cos x) 2 cosx l+sinx 1 + sin x cos x 1 -- COS2 X 2 sin2x = 2 cscz x cos2 x + (1 + sin x)2 cos x(1 + sin x) 2 + 2 sin x cos x(1 + sin x) 2(1 + sinx) cos x(1 + sin x) 2 COS X = 2 sec x 79. sin2y_ 1-cos2y 1 - cos y 1 - cos y 81. 3 o secx+tanx sec x - tan x sec x + tan x (1 + cos y)(1 - cos y) 1 - cos y _._ = 1 + cos y x 0.2 0.4 ¸0.6 0.8 1.0 1.2 1.4 Yl 0.1987 0.3894 0.5646 0.7174 0.8415 0.9320 0.9854 Y2 0.1987 0.3894 0.5646 0.7174 0.8415 0.9320 0.9854 1.0 1.2 1.4 1,0 Conjecture: Yl = Y2 cos x 1 + sin x 85. Yx- 1 -sinx’ Y2- COS X Yl ,., 0.2 0.4 0.6 1.2230 1.5085 1.8958 2.4650 3.4082 , ,, 5.3319 11.6814 1.2230 1.5085 1.8958 2.4650 3.4082 5.3319 11.6814 12,0 Conjecture: Ya = Y2 o o 3(sec x + tan x) sec2 x - tan2 x 3(sec x + tan x) 1 = 3(sec x + tan x) 83° Yl = COS --X , Y2 "- sJnx ~1.5 __ 249 8’7, Yl "- PART I: Solutions to Odd-Numbered Exercises and Practice Tests COS x cot X + sin x = cSC x -6.28 ! i COS x 89. y~ = sec x 1 + sin x tan x 6.28 91. ~/25 - x2 = ~/25 - (5 sin 0)2, x = 5 sin 0 = ~/25 - 25 sin2 0 = ~/25(1 - sin2 O) = -,/25 cos2 0 = 5 cos 0 93. v/~-9= ~/(3secO)2-9, x=3secO = ~/9 sec2 0 - 9 = ~/9 (sec2 0 - 1) = ~/9 tan2 0 = 3 tan 0 95. ~/x2 + 25 = ~/(5 tan 0)2 + 25, x = 5 tan 0 = ~/25 tan2 0 + 25 = ~/25(tan2 0 + 1) = ~/25 sec2 0 = 5 sec 0 97. sin 0 = ~/1 - cos2 0 2 Let Yl = sin x and Y2 = ~/1 - cos2x, 0 --< X < 2¢r. Yl = Y2 for 0 < x < ~r, so we have sin 0 = ~/1 - cosz 0 for 0 < 0 _< ~. 0 ~ 6,28 -2 99. sec 0 = ~/1 + tan20 Let Yl - 1 COS X 4 and Y2 = ~/1 + tan2x, 0 < x < 2~r. ,n" 3"rr yl = yz for 0 < x < ~ and ~ < x < 2,n’, so we have "rr 3-a" sin 0 = ~/1 + tan2 0 for 0 < 0 < ~ and 2 < 0 < 2,rr. - lnlcot .101. lnlcos 01 - lnlsin 01 = ~ In isin Oi - 0I 103. ln(1 + sinx) -lnlsecxl = + lnlI1’ sinai = lnlcosx + cosx. sinxI 105. (a) CSC2-132° -- cot2132° ~ 1.8107 - 0.8107 = 1 2,rr (b) csc2 ~ - cot ~2 2~r ~-- 1.6360 - 0.6360 = 1 6.28 25O PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 1 cOS x 109. csc x cot x - cos x ..... cos x sin x sin x = sin 0 ........ 107. cos - = cos x(csc2 x - 1) (a) 0=80° cos(90* - 80°) = sin 80° 0.9848 = 0.9848 = COSX" cot2x 0~) 0 = 0.8 = sin 0.8 0.7174 = 0.7174 11 111. False. 5 cos 0 5 sec 0 113. False. sin 0 csc ~b :/: 1 unless 115. cos 0 sin 0 = + ~/1 - cos20 sin 0 ~/1 - cos20 tan0=+ cos 0 cos 0 117. 0 = 341° 1 sinO 1 sec 0 - ’ cos 0 CSC , 0’= 360° - 341° = 19° 1 -~/1-cos:~ cos 0 1 cot 0 = ~ = + tan0 -.,/I-cos20 The sign + or - depends on the choice of 0. 35"rr. ll’n" 121. 0 = ~ is coterminal with ~ 119. 0 = -212° is coterminal with 148° 0’= 180° - 148° = 32° ll~r ~r O’ = 2"n-- ~ 66 y Period: --=2 ~r 2 3 125. f(x)= ~cos(x - ,r) + 3 y 123. f(x) = - 2 tan -~I l I "\’ "\t "\ ~\ ’ \-r ,\ I~ I~ I,I,-~T I, l I | " ’k y ,,~ Amplitude: ~ I~ I 1, I I I 2~ 251 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests a 127. sin A = - ==~ a = c - sin A = 20 sin 28° ~ 9.39 129. a = ~/c2 - b2 = x/1-2.542 - 6.22 ~ 10.90 c b 6.2 sin B .... ==~ B = 29.63° c 12.54 A = 90° - 29.63° = 60.37° B = 90° -A° = 62° b cosA=- ==~ b=c.cosA~- 17.66 c Section 5.2 Verifying Trigonometric Identities [] You should know the difference between an expression, a conditional equation, and an identity. [] You should be able to solve trigonometric identities, using the following techniques. (a) Work with one side at a time. Do not "cross" the equal sign. (b) Use algebraic techniques such as combining fractions, factoring expressions, rationalizing denominators, and squaring binomials. (c) Use the fundamental identities. (d) Convert all the terms into sines and cosines. Solutions to Odd-Numbered Exercises csc2 x 1 sin x 1 cot x sin2 x cos x sin x ¯ cos x 1. sin tcsct = sin t(s-~nt) = 1 = csc x ¯ sec x 7. tan2 0 + 6 =(sec2/9- 1) + 6 = sec2 O + 5 5. cos2/3 - sin2/3 = (1 - sin2/3) - sin2/3 -- 1 - 2 sin2/3 sin x 9. cos x + sin x tan x = cos x + sin x ¯ ~ COS X ._ cos2 x + sin2 x COS X 1 COS X 11. x Yl ¸Y2 0~1.5 0 0.2 4.835 4.835 0.4 0.6 0.8 1.0 1.2 1.4 2.1785 1.2064 0.6767 0.3469 0.1409 0.0293 2.1785 1.2064 O.6767 0.3469 0.1409 0.0293 ,- 1 sec x tan x -- COS X ¯ COS x sin x COS2 x sin x 1 - sin2 x sin x 1 sin x sin x = CSCX-- sinx