Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometric Functions Math 113/114 Lecture 3 Xi Chen 1 1 University of Alberta September 10, 2014 Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Outline 1 Trigonometric Functions Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Basic Definition Trigonometric functions cos x, sin x, tan x, cot x, sec x and csc x are defined by c a x sin x = a c cos x = b c tan x = a b cot x = b a sec x = c b csc x = c a b Pythagorean Theorem: a2 + b2 = c 2 We use Radian instead of Degree: 180◦ = π rad. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Basic Definition Trigonometric functions cos x, sin x, tan x, cot x, sec x and csc x are defined by c a x sin x = a c cos x = b c tan x = a b cot x = b a sec x = c b csc x = c a b Pythagorean Theorem: a2 + b2 = c 2 We use Radian instead of Degree: 180◦ = π rad. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Special Angles x 0 π = 30◦ 6 √ cos x sin x 1 3 2 0 1 2 π = 45◦ 4 √ 2 2 √ 2 2 √ tan x 0 3 3 1 Xi Chen π = 60◦ 3 π = 90◦ 2 1 2 0 √ 3 2 √ 3 Math 113/114 Lecture 3 1 ND Trigonometric Functions Basic Identities By the definition, sin x , cot x cos x 1 , csc x sec x = cos x tan x = cos x sin x 1 = sin x = Consequences of Pythagorean: cos2 x + sin2 x = 1 sec2 x − tan2 x = 1 csc2 x − cot2 x = 1 | cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Basic Identities By the definition, sin x , cot x cos x 1 , csc x sec x = cos x tan x = cos x sin x 1 = sin x = Consequences of Pythagorean: cos2 x + sin2 x = 1 sec2 x − tan2 x = 1 csc2 x − cot2 x = 1 | cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Basic Identities By the definition, sin x , cot x cos x 1 , csc x sec x = cos x tan x = cos x sin x 1 = sin x = Consequences of Pythagorean: cos2 x + sin2 x = 1 sec2 x − tan2 x = 1 csc2 x − cot2 x = 1 | cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Show that cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x. Proof. cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1 ⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1 ⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2 Example. Solve the equation sin(x) + cos2 (2x) = 2. Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1, sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1. Therefore, π sin(x) = 1 ⇒ x = 2nπ + 2 2 and since cos (2(2nπ + π/2)) = 1, the solutions are x = 2nπ + π/2 for n integers. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Periodic Behavior Basic Relations: π ) = − sin x 2 π sin(−x) = − sin x, sin(x + ) = cos x 2 cos(−x) = cos(x), cos(x + Example. Find cos(x + π), sin(x + π) and tan(x + π). π π π ) + ) = − sin(x + ) = − cos(x) 2 2 2 π π π sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x) 2 2 2 sin(x + π) − sin(x) tan(x + π) = = = tan(x). cos(x + π) − cos(x) cos(x + π) = cos((x + Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Periodic Behavior Basic Relations: π ) = − sin x 2 π sin(−x) = − sin x, sin(x + ) = cos x 2 cos(−x) = cos(x), cos(x + Example. Find cos(x + π), sin(x + π) and tan(x + π). π π π ) + ) = − sin(x + ) = − cos(x) 2 2 2 π π π sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x) 2 2 2 sin(x + π) − sin(x) tan(x + π) = = = tan(x). cos(x + π) − cos(x) cos(x + π) = cos((x + Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Periodic Behavior Basic Relations: π ) = − sin x 2 π sin(−x) = − sin x, sin(x + ) = cos x 2 cos(−x) = cos(x), cos(x + Example. Find cos(x + π), sin(x + π) and tan(x + π). π π π ) + ) = − sin(x + ) = − cos(x) 2 2 2 π π π sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x) 2 2 2 sin(x + π) − sin(x) tan(x + π) = = = tan(x). cos(x + π) − cos(x) cos(x + π) = cos((x + Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Find cos(x + 2π) and sin(x + 2π). cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x) sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x). Example. Find cos(2015π − x) and sin(2015π − x). cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x) = (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x) = (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Find cos(x + 2π) and sin(x + 2π). cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x) sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x). Example. Find cos(2015π − x) and sin(2015π − x). cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x) = (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x) = (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Find cos(x + 2π) and sin(x + 2π). cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x) sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x). Example. Find cos(2015π − x) and sin(2015π − x). cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x) = (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x) = (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Find cos(x + 2π) and sin(x + 2π). cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x) sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x). Example. Find cos(2015π − x) and sin(2015π − x). cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x) = (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x) = (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Example Example. Find sin( 2015π 2015π ) and cos( ) 3 3 2015π π π ) = sin(672π − ) = (−1)672 sin(− ) 3 3√ 3 π 3 = − sin( ) = − 3 2 π π 2015π ) = cos(672π − ) = (−1)672 cos(− ) cos( 3 3 3 π 1 = cos( ) = 3 2 sin( Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Example Example. Find sin( 2015π 2015π ) and cos( ) 3 3 2015π π π ) = sin(672π − ) = (−1)672 sin(− ) 3 3√ 3 π 3 = − sin( ) = − 3 2 π π 2015π ) = cos(672π − ) = (−1)672 cos(− ) cos( 3 3 3 π 1 = cos( ) = 3 2 sin( Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Addition Formula Derive cos(x + y) = cos(x) cos(y ) − sin(x) sin(y ) from law of cosine: c x y cos(x + y) = a c 2 + e2 − (a + d)2 2ce b c = b sec x, e = b sec y e d a = b tan x, d = b tan y Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive a formula for cos(x − y ). cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y) = cos(x) cos(y) + sin(x) sin(y) Example. Derive formulas sin(x + y) and sin(x − y ). π ) 2 π π = − cos(x) cos(y + ) + sin(x) sin(y + ) 2 2 = cos(x) sin(y ) + sin(x) cos(y ) sin(x + y) = − cos(x + y + sin(x − y) = sin(x + (−y)) = cos(x) sin(−y ) + sin(x) cos(−y) = sin(x) cos(y ) − cos(x) sin(y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive a formula for cos(x − y ). cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y) = cos(x) cos(y) + sin(x) sin(y) Example. Derive formulas sin(x + y) and sin(x − y ). π ) 2 π π = − cos(x) cos(y + ) + sin(x) sin(y + ) 2 2 = cos(x) sin(y ) + sin(x) cos(y ) sin(x + y) = − cos(x + y + sin(x − y) = sin(x + (−y)) = cos(x) sin(−y ) + sin(x) cos(−y) = sin(x) cos(y ) − cos(x) sin(y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive a formula for cos(x − y ). cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y) = cos(x) cos(y) + sin(x) sin(y) Example. Derive formulas sin(x + y) and sin(x − y ). π ) 2 π π = − cos(x) cos(y + ) + sin(x) sin(y + ) 2 2 = cos(x) sin(y ) + sin(x) cos(y ) sin(x + y) = − cos(x + y + sin(x − y) = sin(x + (−y)) = cos(x) sin(−y ) + sin(x) cos(−y) = sin(x) cos(y ) − cos(x) sin(y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive a formula for cos(x − y ). cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y) = cos(x) cos(y) + sin(x) sin(y) Example. Derive formulas sin(x + y) and sin(x − y ). π ) 2 π π = − cos(x) cos(y + ) + sin(x) sin(y + ) 2 2 = cos(x) sin(y ) + sin(x) cos(y ) sin(x + y) = − cos(x + y + sin(x − y) = sin(x + (−y)) = cos(x) sin(−y ) + sin(x) cos(−y) = sin(x) cos(y ) − cos(x) sin(y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive formulas cos(2x) and sin(2x). Let x = y. Then cos(2x) = cos(x + x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x Example. Derive a formula for cos(3x). Example. Derive a formula for tan(x + y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive formulas cos(2x) and sin(2x). Let x = y. Then cos(2x) = cos(x + x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x Example. Derive a formula for cos(3x). Example. Derive a formula for tan(x + y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive formulas cos(2x) and sin(2x). Let x = y. Then cos(2x) = cos(x + x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x Example. Derive a formula for cos(3x). Example. Derive a formula for tan(x + y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Examples Example. Derive formulas cos(2x) and sin(2x). Let x = y. Then cos(2x) = cos(x + x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x Example. Derive a formula for cos(3x). Example. Derive a formula for tan(x + y). Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Trigonometric Equations and Inequalities The solutions for cos x = a are x = 2nπ ± θ if cos θ = a. The solutions for sin x = a are x = 2nπ + θ and x = 2nπ + π − θ if sin θ = a The solutions for tan x = a are x = nπ + θ if tan θ = a. The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if cos θ = a and θ ∈ [0, π]. The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if sin θ = a and θ ∈ [−π/2, π/2]. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Trigonometric Equations and Inequalities The solutions for cos x = a are x = 2nπ ± θ if cos θ = a. The solutions for sin x = a are x = 2nπ + θ and x = 2nπ + π − θ if sin θ = a The solutions for tan x = a are x = nπ + θ if tan θ = a. The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if cos θ = a and θ ∈ [0, π]. The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if sin θ = a and θ ∈ [−π/2, π/2]. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Trigonometric Equations and Inequalities The solutions for cos x = a are x = 2nπ ± θ if cos θ = a. The solutions for sin x = a are x = 2nπ + θ and x = 2nπ + π − θ if sin θ = a The solutions for tan x = a are x = nπ + θ if tan θ = a. The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if cos θ = a and θ ∈ [0, π]. The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if sin θ = a and θ ∈ [−π/2, π/2]. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Trigonometric Equations and Inequalities The solutions for cos x = a are x = 2nπ ± θ if cos θ = a. The solutions for sin x = a are x = 2nπ + θ and x = 2nπ + π − θ if sin θ = a The solutions for tan x = a are x = nπ + θ if tan θ = a. The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if cos θ = a and θ ∈ [0, π]. The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if sin θ = a and θ ∈ [−π/2, π/2]. Xi Chen Math 113/114 Lecture 3 Trigonometric Functions Trigonometric Equations and Inequalities The solutions for cos x = a are x = 2nπ ± θ if cos θ = a. The solutions for sin x = a are x = 2nπ + θ and x = 2nπ + π − θ if sin θ = a The solutions for tan x = a are x = nπ + θ if tan θ = a. The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if cos θ = a and θ ∈ [0, π]. The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if sin θ = a and θ ∈ [−π/2, π/2]. Xi Chen Math 113/114 Lecture 3