Download Math 113/114 Lecture 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Functions
Math 113/114 Lecture 3
Xi Chen 1
1 University
of Alberta
September 10, 2014
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Outline
1
Trigonometric Functions
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Basic Definition
Trigonometric functions cos x, sin x, tan x, cot x, sec x and
csc x are defined by
c
a
x
sin x =
a
c
cos x =
b
c
tan x =
a
b
cot x =
b
a
sec x =
c
b
csc x =
c
a
b
Pythagorean Theorem: a2 + b2 = c 2
We use Radian instead of Degree: 180◦ = π rad.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Basic Definition
Trigonometric functions cos x, sin x, tan x, cot x, sec x and
csc x are defined by
c
a
x
sin x =
a
c
cos x =
b
c
tan x =
a
b
cot x =
b
a
sec x =
c
b
csc x =
c
a
b
Pythagorean Theorem: a2 + b2 = c 2
We use Radian instead of Degree: 180◦ = π rad.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Special Angles
x
0
π
= 30◦
6
√
cos x
sin x
1
3
2
0
1
2
π
= 45◦
4
√
2
2
√
2
2
√
tan x
0
3
3
1
Xi Chen
π
= 60◦
3
π
= 90◦
2
1
2
0
√
3
2
√
3
Math 113/114 Lecture 3
1
ND
Trigonometric Functions
Basic Identities
By the definition,
sin x
, cot x
cos x
1
, csc x
sec x =
cos x
tan x =
cos x
sin x
1
=
sin x
=
Consequences of Pythagorean:
cos2 x + sin2 x = 1
sec2 x − tan2 x = 1
csc2 x − cot2 x = 1
| cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Basic Identities
By the definition,
sin x
, cot x
cos x
1
, csc x
sec x =
cos x
tan x =
cos x
sin x
1
=
sin x
=
Consequences of Pythagorean:
cos2 x + sin2 x = 1
sec2 x − tan2 x = 1
csc2 x − cot2 x = 1
| cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Basic Identities
By the definition,
sin x
, cot x
cos x
1
, csc x
sec x =
cos x
tan x =
cos x
sin x
1
=
sin x
=
Consequences of Pythagorean:
cos2 x + sin2 x = 1
sec2 x − tan2 x = 1
csc2 x − cot2 x = 1
| cos x|, | sin x| ≤ 1 and | sec x|, | csc x| ≥ 1 for all x.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Show that
cos4 x + sin4 x = 1 − 2(cos x sin x)2 for all x.
Proof.
cos2 x + sin2 x = 1 ⇒ (cos2 x + sin2 x)2 = 1
⇒ cos4 x + sin4 x + 2(cos x sin x)2 = 1
⇒ cos4 x + sin4 x = 1 − 2(cos x sin x)2
Example. Solve the equation sin(x) + cos2 (2x) = 2.
Solution. Since sin(x) ≤ 1 and cos2 (2x) ≤ 1,
sin(x) + cos2 (2x) = 2 if and only if sin(x) = cos2 (2x) = 1.
Therefore,
π
sin(x) = 1 ⇒ x = 2nπ +
2
2
and since cos (2(2nπ + π/2)) = 1, the solutions are
x = 2nπ + π/2 for n integers.
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Periodic Behavior
Basic Relations:
π
) = − sin x
2
π
sin(−x) = − sin x, sin(x + ) = cos x
2
cos(−x) = cos(x), cos(x +
Example. Find cos(x + π), sin(x + π) and tan(x + π).
π
π
π
) + ) = − sin(x + ) = − cos(x)
2
2
2
π
π
π
sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x)
2
2
2
sin(x + π)
− sin(x)
tan(x + π) =
=
= tan(x).
cos(x + π)
− cos(x)
cos(x + π) = cos((x +
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Periodic Behavior
Basic Relations:
π
) = − sin x
2
π
sin(−x) = − sin x, sin(x + ) = cos x
2
cos(−x) = cos(x), cos(x +
Example. Find cos(x + π), sin(x + π) and tan(x + π).
π
π
π
) + ) = − sin(x + ) = − cos(x)
2
2
2
π
π
π
sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x)
2
2
2
sin(x + π)
− sin(x)
tan(x + π) =
=
= tan(x).
cos(x + π)
− cos(x)
cos(x + π) = cos((x +
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Periodic Behavior
Basic Relations:
π
) = − sin x
2
π
sin(−x) = − sin x, sin(x + ) = cos x
2
cos(−x) = cos(x), cos(x +
Example. Find cos(x + π), sin(x + π) and tan(x + π).
π
π
π
) + ) = − sin(x + ) = − cos(x)
2
2
2
π
π
π
sin(x + π) = sin((x + ) + ) = cos(x + ) = − sin(x)
2
2
2
sin(x + π)
− sin(x)
tan(x + π) =
=
= tan(x).
cos(x + π)
− cos(x)
cos(x + π) = cos((x +
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Find cos(x + 2π) and sin(x + 2π).
cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x)
sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x).
Example. Find cos(2015π − x) and sin(2015π − x).
cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x)
= (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x
sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x)
= (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Find cos(x + 2π) and sin(x + 2π).
cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x)
sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x).
Example. Find cos(2015π − x) and sin(2015π − x).
cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x)
= (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x
sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x)
= (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Find cos(x + 2π) and sin(x + 2π).
cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x)
sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x).
Example. Find cos(2015π − x) and sin(2015π − x).
cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x)
= (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x
sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x)
= (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Find cos(x + 2π) and sin(x + 2π).
cos(x + 2π) = cos((x + π) + π) = − cos(x + π) = cos(x)
sin(x + 2π) = sin((x + π) + π) = − sin(x + π) = sin(x).
Example. Find cos(2015π − x) and sin(2015π − x).
cos(2015π − x) = cos((2014π − x) + π) = (−1) cos(2014π − x)
= (−1)2 cos(2013π − x) = ... = (−1)2015 cos(−x) = − cos x
sin(2015π − x) = sin((2014π − x) + π) = (−1) sin(2014π − x)
= (−1)2 sin(2013π − x) = ... = (−1)2015 sin(−x) = sin x
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Example
Example. Find
sin(
2015π
2015π
) and cos(
)
3
3
2015π
π
π
) = sin(672π − ) = (−1)672 sin(− )
3
3√
3
π
3
= − sin( ) = −
3
2
π
π
2015π
) = cos(672π − ) = (−1)672 cos(− )
cos(
3
3
3
π
1
= cos( ) =
3
2
sin(
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Example
Example. Find
sin(
2015π
2015π
) and cos(
)
3
3
2015π
π
π
) = sin(672π − ) = (−1)672 sin(− )
3
3√
3
π
3
= − sin( ) = −
3
2
π
π
2015π
) = cos(672π − ) = (−1)672 cos(− )
cos(
3
3
3
π
1
= cos( ) =
3
2
sin(
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Addition Formula
Derive
cos(x + y) = cos(x) cos(y ) − sin(x) sin(y )
from law of cosine:
c
x
y
cos(x + y) =
a
c 2 + e2 − (a + d)2
2ce
b
c = b sec x, e = b sec y
e
d
a = b tan x, d = b tan y
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive a formula for cos(x − y ).
cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y)
= cos(x) cos(y) + sin(x) sin(y)
Example. Derive formulas sin(x + y) and sin(x − y ).
π
)
2
π
π
= − cos(x) cos(y + ) + sin(x) sin(y + )
2
2
= cos(x) sin(y ) + sin(x) cos(y )
sin(x + y) = − cos(x + y +
sin(x − y) = sin(x + (−y))
= cos(x) sin(−y ) + sin(x) cos(−y)
= sin(x) cos(y ) − cos(x) sin(y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive a formula for cos(x − y ).
cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y)
= cos(x) cos(y) + sin(x) sin(y)
Example. Derive formulas sin(x + y) and sin(x − y ).
π
)
2
π
π
= − cos(x) cos(y + ) + sin(x) sin(y + )
2
2
= cos(x) sin(y ) + sin(x) cos(y )
sin(x + y) = − cos(x + y +
sin(x − y) = sin(x + (−y))
= cos(x) sin(−y ) + sin(x) cos(−y)
= sin(x) cos(y ) − cos(x) sin(y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive a formula for cos(x − y ).
cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y)
= cos(x) cos(y) + sin(x) sin(y)
Example. Derive formulas sin(x + y) and sin(x − y ).
π
)
2
π
π
= − cos(x) cos(y + ) + sin(x) sin(y + )
2
2
= cos(x) sin(y ) + sin(x) cos(y )
sin(x + y) = − cos(x + y +
sin(x − y) = sin(x + (−y))
= cos(x) sin(−y ) + sin(x) cos(−y)
= sin(x) cos(y ) − cos(x) sin(y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive a formula for cos(x − y ).
cos(x − y ) = cos(x + (−y)) = cos(x) cos(−y) − sin(x) sin(−y)
= cos(x) cos(y) + sin(x) sin(y)
Example. Derive formulas sin(x + y) and sin(x − y ).
π
)
2
π
π
= − cos(x) cos(y + ) + sin(x) sin(y + )
2
2
= cos(x) sin(y ) + sin(x) cos(y )
sin(x + y) = − cos(x + y +
sin(x − y) = sin(x + (−y))
= cos(x) sin(−y ) + sin(x) cos(−y)
= sin(x) cos(y ) − cos(x) sin(y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive formulas cos(2x) and sin(2x).
Let x = y. Then
cos(2x) = cos(x + x) = cos2 x − sin2 x
= 2 cos2 x − 1 = 1 − 2 sin2 x
sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x
Example. Derive a formula for cos(3x).
Example. Derive a formula for tan(x + y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive formulas cos(2x) and sin(2x).
Let x = y. Then
cos(2x) = cos(x + x) = cos2 x − sin2 x
= 2 cos2 x − 1 = 1 − 2 sin2 x
sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x
Example. Derive a formula for cos(3x).
Example. Derive a formula for tan(x + y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive formulas cos(2x) and sin(2x).
Let x = y. Then
cos(2x) = cos(x + x) = cos2 x − sin2 x
= 2 cos2 x − 1 = 1 − 2 sin2 x
sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x
Example. Derive a formula for cos(3x).
Example. Derive a formula for tan(x + y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Examples
Example. Derive formulas cos(2x) and sin(2x).
Let x = y. Then
cos(2x) = cos(x + x) = cos2 x − sin2 x
= 2 cos2 x − 1 = 1 − 2 sin2 x
sin(2x) = sin(x + x) = cos x sin x + sin x cos x = 2 cos x sin x
Example. Derive a formula for cos(3x).
Example. Derive a formula for tan(x + y).
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Trigonometric Equations and Inequalities
The solutions for cos x = a are x = 2nπ ± θ if cos θ = a.
The solutions for sin x = a are x = 2nπ + θ and
x = 2nπ + π − θ if sin θ = a
The solutions for tan x = a are x = nπ + θ if tan θ = a.
The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if
cos θ = a and θ ∈ [0, π].
The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if
sin θ = a and θ ∈ [−π/2, π/2].
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Trigonometric Equations and Inequalities
The solutions for cos x = a are x = 2nπ ± θ if cos θ = a.
The solutions for sin x = a are x = 2nπ + θ and
x = 2nπ + π − θ if sin θ = a
The solutions for tan x = a are x = nπ + θ if tan θ = a.
The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if
cos θ = a and θ ∈ [0, π].
The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if
sin θ = a and θ ∈ [−π/2, π/2].
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Trigonometric Equations and Inequalities
The solutions for cos x = a are x = 2nπ ± θ if cos θ = a.
The solutions for sin x = a are x = 2nπ + θ and
x = 2nπ + π − θ if sin θ = a
The solutions for tan x = a are x = nπ + θ if tan θ = a.
The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if
cos θ = a and θ ∈ [0, π].
The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if
sin θ = a and θ ∈ [−π/2, π/2].
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Trigonometric Equations and Inequalities
The solutions for cos x = a are x = 2nπ ± θ if cos θ = a.
The solutions for sin x = a are x = 2nπ + θ and
x = 2nπ + π − θ if sin θ = a
The solutions for tan x = a are x = nπ + θ if tan θ = a.
The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if
cos θ = a and θ ∈ [0, π].
The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if
sin θ = a and θ ∈ [−π/2, π/2].
Xi Chen
Math 113/114 Lecture 3
Trigonometric Functions
Trigonometric Equations and Inequalities
The solutions for cos x = a are x = 2nπ ± θ if cos θ = a.
The solutions for sin x = a are x = 2nπ + θ and
x = 2nπ + π − θ if sin θ = a
The solutions for tan x = a are x = nπ + θ if tan θ = a.
The solutions for cos x > a are 2nπ − θ < x < 2nπ + θ if
cos θ = a and θ ∈ [0, π].
The solutions for sin x > a are 2nπ + θ < x < 2nπ + π − θ if
sin θ = a and θ ∈ [−π/2, π/2].
Xi Chen
Math 113/114 Lecture 3
Related documents