Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Integration by parts (Sect. 8.1) I Integral form of the product rule. I Exponential and logarithms. I Trigonometric functions. I Definite integrals. I Substitution and integration by parts. Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Theorem For all differentiable functions g , f : R → R holds Z Z f (x) g 0 (x) dx = f (x) g (x) − f 0 (x) g (x) dx. Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Theorem For all differentiable functions g , f : R → R holds Z Z f (x) g 0 (x) dx = f (x) g (x) − f 0 (x) g (x) dx. Proof: Integrate the product rule f g 0 = (fg )0 − f 0 g , Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Theorem For all differentiable functions g , f : R → R holds Z Z f (x) g 0 (x) dx = f (x) g (x) − f 0 (x) g (x) dx. Proof: Integrate the product rule f g 0Z= (fg )0 − f 0 g , and use the Fundamental Theorem of Calculus in (fg )0 dx = fg . Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Theorem For all differentiable functions g , f : R → R holds Z Z f (x) g 0 (x) dx = f (x) g (x) − f 0 (x) g (x) dx. Proof: Integrate the product rule f g 0Z= (fg )0 − f 0 g , and use the Fundamental Theorem of Calculus in (fg )0 dx = fg . Z Notation: It is common to write Z u dv = uv − v du, Integral form of the product rule Remark: The integration by parts formula is an integral form of the product rule for derivatives: (fg )0 = f 0 g + f g 0 . Theorem For all differentiable functions g , f : R → R holds Z Z f (x) g 0 (x) dx = f (x) g (x) − f 0 (x) g (x) dx. Proof: Integrate the product rule f g 0Z= (fg )0 − f 0 g , and use the Fundamental Theorem of Calculus in (fg )0 dx = fg . Z Notation: It is common to write u = f (x), dv = g 0 (x) dx, Z u dv = uv − and v = g (x), v du, where du = f 0 (x) dx. Integration by parts (Sect. 8.1) I Integral form of the product rule. I Exponential and logarithms. I Trigonometric functions. I Definite integrals. I Substitution and integration by parts. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − Z f 0 (x) g (x) dx. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − We need to choose the functions f and g . Z f 0 (x) g (x) dx. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − Z f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − Z f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. f (x) = x, g 0 (x) = e 2x Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. f (x) = x, g 0 (x) = e 2x ⇒ f 0 (x) = 1, g (x) = e 2x . 2 Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. f (x) = x, Z xe 2x g 0 (x) = e 2x x e 2x dx = − 2 ⇒ Z f 0 (x) = 1, e 2x dx 2 g (x) = e 2x . 2 Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. f (x) = x, Z xe 2x g 0 (x) = e 2x x e 2x dx = − 2 ⇒ Z f 0 (x) = 1, g (x) = e 2x . 2 e 2x e 2x x e 2x dx = − + c. 2 2 4 Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Z 0 f (x) g (x) dx = f (x) g (x) − Solution: Recall: f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. f (x) = x, Z xe 2x g 0 (x) = e 2x x e 2x dx = − 2 We conclude I = ⇒ Z f 0 (x) = 1, g (x) = e 2x . 2 e 2x e 2x x e 2x dx = − + c. 2 2 4 e 2x (2x − 1) + c. 4 C Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − Z f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: 0 f (x) g (x) dx = f (x) g (x) − Z f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Wrong choice: f (x) = e 2x , g 0 (x) = x Exponentials and logarithms Example Z Evaluate I = x e 2x dx. Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Wrong choice: f (x) = e 2x , g 0 (x) = x ⇒ f 0 (x) = 2 e 2x , g (x) = x2 . 2 Exponentials and logarithms Example Z x e 2x dx. Evaluate I = Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Wrong choice: g 0 (x) = x f (x) = e 2x , Z xe 2x ⇒ f 0 (x) = 2 e 2x , x 2 e 2x dx = − 2 Z x 2 e 2x dx. g (x) = x2 . 2 Exponentials and logarithms Example Z x e 2x dx. Evaluate I = Z Solution: Recall: Z 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. We need to choose the functions f and g . They should be chosen in a way that the right-hand side above is simpler to integrate than the original left-hand side. Wrong choice: g 0 (x) = x f (x) = e 2x , Z xe 2x ⇒ f 0 (x) = 2 e 2x , x 2 e 2x dx = − 2 This is the wrong choice. Z g (x) = x2 . 2 x 2 e 2x dx. C Exponentials and logarithms Z Remark: We use now the Z u dv = uv − v du notation. Exponentials and logarithms Z Remark: We use now the Example Z Evaluate I = ln(x) dx. Z u dv = uv − v du notation. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : v du notation. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : u = ln(x), dv = dx v du notation. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − v du notation. Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : u = ln(x), dv = dx ⇒ du = dx , x v = x. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − v du notation. Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : u = ln(x), ⇒ dv = dx Z Z ln(x) dx = x ln(x) − x du = dx x dx , x v = x. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − v du notation. Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : u = ln(x), ⇒ dv = dx Z Z ln(x) dx = x ln(x) − du = dx , x v = x. dx = x ln(x) − x x Z dx. Exponentials and logarithms Z Remark: We use now the Z u dv = uv − v du notation. Example Z Evaluate I = ln(x) dx. Solution: We need to choose u and v : u = ln(x), ⇒ dv = dx Z Z ln(x) dx = x ln(x) − du = dx , x v = x. dx = x ln(x) − x x We conclude that I = x ln(x) − x + c. Z dx. C Exponentials and logarithms Remark: Integration by parts can be used more than once. Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, v = ex . Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx v = ex . Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx We integrate by parts one more time. v = ex . Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx We integrate by parts one more time. u = x, dv = e x dx v = ex . Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx v = ex . We integrate by parts one more time. u = x, dv = e x dx ⇒ du = dx, v = ex . Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx v = ex . We integrate by parts one more time. u = x, Z du = dx, v = e x . Z h i x 2 e x dx = x 2 e x − 2 x e x − e x dx dv = e x dx ⇒ Exponentials and logarithms Remark: Integration by parts can be used more than once. Example Z Evaluate I = x 2 e x dx. Solution: u = x 2 , dv = e x dx ⇒ du = 2x dx, Z Z x 2 e x dx = x 2 e x − 2 x e x dx v = ex . We integrate by parts one more time. u = x, Z du = dx, v = e x . Z h i x 2 e x dx = x 2 e x − 2 x e x − e x dx dv = e x dx ⇒ We conclude that I = x 2 e x − 2x e x + 2e x + c. C Integration by parts (Sect. 8.1) I Integral form of the product rule. I Exponential and logarithms. I Trigonometric functions. I Definite integrals. I Substitution and integration by parts. Trigonometric functions Example Z Evaluate I = x sin(x) dx. Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: u = x, dv = sin(x) dx, Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: u = x, dv = sin(x) dx, ⇒ du = dx, v = − cos(x). Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: u = x, dv = sin(x) dx, ⇒ du = dx, v = − cos(x). Z I = −x cos(x) − [− cos(x)] dx. Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: u = x, dv = sin(x) dx, ⇒ du = dx, v = − cos(x). Z I = −x cos(x) − [− cos(x)] dx. Z I = −x cos(x) + cos(x) dx. Trigonometric functions Example Z Evaluate I = x sin(x) dx. Solution: We choose u, v so that we simplify the integral: u = x, dv = sin(x) dx, ⇒ du = dx, v = − cos(x). Z I = −x cos(x) − [− cos(x)] dx. Z I = −x cos(x) + cos(x) dx. We conclude that I = −x cos(x) + sin(x) + c. C Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , dv = sin(x) dx Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , dv = sin(x) dx ⇒ du = a e ax dx, v = − cos(x). Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , du = a e ax dx, v = − cos(x). Z ax I = −e cos(x) + a e ax cos(x) dx. dv = sin(x) dx ⇒ Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , u = e ax , du = a e ax dx, v = − cos(x). Z ax I = −e cos(x) + a e ax cos(x) dx. dv = sin(x) dx dv = cos(x) dx ⇒ Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , u = e ax , du = a e ax dx, v = − cos(x). Z ax I = −e cos(x) + a e ax cos(x) dx. dv = sin(x) dx dv = cos(x) dx ⇒ ⇒ du = a e ax dx, v = sin(x). Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , du = a e ax dx, v = − cos(x). Z ax I = −e cos(x) + a e ax cos(x) dx. dv = sin(x) dx ⇒ dv = cos(x) dx ⇒ du = a e ax dx, v = sin(x). Z h i I = −e ax cos(x) + a e ax sin(x) − a e ax sin(x) dx . u = e ax , Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: In this case we need to integrate by parts twice. u = e ax , du = a e ax dx, v = − cos(x). Z ax I = −e cos(x) + a e ax cos(x) dx. dv = sin(x) dx ⇒ dv = cos(x) dx ⇒ du = a e ax dx, v = sin(x). Z h i I = −e ax cos(x) + a e ax sin(x) − a e ax sin(x) dx . u = e ax , Z e ax sin(x) dx = −e ax cos(x) + a e ax sin(x) − a 2 Z e ax sin(x) dx. Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: Recall: Z Z ax ax ax 2 e sin(x) dx = −e cos(x) + a e sin(x) − a e ax sin(x) dx. Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: Recall: Z Z ax ax ax 2 e sin(x) dx = −e cos(x) + a e sin(x) − a e ax sin(x) dx. Remark: The last term on the right-hand side is proportional to the negative of the left-hand side. Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: Recall: Z Z ax ax ax 2 e sin(x) dx = −e cos(x) + a e sin(x) − a e ax sin(x) dx. Remark: The last term on the right-hand side is proportional to the negative of the left-hand side. So, for all a 6= 0 holds Z 2 (1 + a ) e ax sin(x) dx = −e ax cos(x) + a e ax sin(x). Trigonometric functions Example Z Evaluate I = e ax sin(x) dx. Solution: Recall: Z Z ax ax ax 2 e sin(x) dx = −e cos(x) + a e sin(x) − a e ax sin(x) dx. Remark: The last term on the right-hand side is proportional to the negative of the left-hand side. So, for all a 6= 0 holds Z 2 (1 + a ) e ax sin(x) dx = −e ax cos(x) + a e ax sin(x). We then conclude that Z e ax sin(x) dx = e ax − cos(x) + a sin(x) . 2 (1 + a ) C Integration by parts (Sect. 8.1) I Integral form of the product rule. I Exponential and logarithms. I Trigonometric functions. I Definite integrals. I Substitution and integration by parts. Definite integrals Remark: Integration by parts can be used with definite integrals. Definite integrals Remark: Integration by parts can be used with definite integrals. Theorem For all differentiable functions f , g : R → R holds Z b Z b b 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. a a a Definite integrals Remark: Integration by parts can be used with definite integrals. Theorem For all differentiable functions f , g : R → R holds Z b Z b b 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. a a Example Z Evaluate I = 0 π e ax sin(x) dx. a Definite integrals Remark: Integration by parts can be used with definite integrals. Theorem For all differentiable functions f , g : R → R holds Z b Z b b 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. a a Example Z Evaluate I = a π e ax sin(x) dx. 0 Solution: Use integrations by parts and evaluate the result: Definite integrals Remark: Integration by parts can be used with definite integrals. Theorem For all differentiable functions f , g : R → R holds Z b Z b b 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. a a Example Z Evaluate I = a π e ax sin(x) dx. 0 Solution: Use integrations by parts and evaluate the result: Z π h e ax iπ e ax sin(x) dx = − cos(x) + a sin(x) (1 + a2 ) 0 0 Definite integrals Remark: Integration by parts can be used with definite integrals. Theorem For all differentiable functions f , g : R → R holds Z b Z b b 0 f (x) g (x) dx = f (x) g (x) − f 0 (x) g (x) dx. a a Example Z Evaluate I = a π e ax sin(x) dx. 0 Solution: Use integrations by parts and evaluate the result: Z π h e ax iπ e ax sin(x) dx = − cos(x) + a sin(x) (1 + a2 ) 0 0 Z π (e aπ + 1) . e ax sin(x) dx = (1 + a2 ) 0 C Integration by parts (Sect. 8.1) I Integral form of the product rule. I Exponential and logarithms. I Trigonometric functions. I Definite integrals. I Substitution and integration by parts. Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx . x Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx = x dy dx . x Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx = x dy = e y dy . dx . x Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx = x dy = e y dy . Z The integral is I = cos(y ) e y dy , dx . x Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx . x dx = x dy = e y dy . Z The integral is I = cos(y ) e y dy , and we integrate by parts. Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx . x dx = x dy = e y dy . Z The integral is I = cos(y ) e y dy , and we integrate by parts. If u = e y , dv = cos(y ) dy , then du = e y dy , v = sin(y ), Substitution and integration by parts Remark: Substitution and integration by parts can be used on the same integral. Example Z Evaluate I = cos ln(x) dx. Solution: We start with the substitution y = ln(x), and dy = dx . x dx = x dy = e y dy . Z The integral is I = cos(y ) e y dy , and we integrate by parts. If u = e y , dv = cos(y ) dy , then du = e y dy , v = sin(y ), Z Z y y e cos(y ) dy = e sin(y ) − e y sin(y ) dy . Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = ey , dv = sin(y ) dy , Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = ey , dv = sin(y ) dy , ⇒ du = e y dy , v = − cos(y ). Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = e y , dv = sin(y ) dy , ⇒ du = e y dy , v = − cos(y ). Z Z h i y y y e cos(y ) dy = e sin(y ) − −e cos(y ) + e y cos(y ) dy . Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = e y , dv = sin(y ) dy , ⇒ du = e y dy , v = − cos(y ). Z Z h i y y y e cos(y ) dy = e sin(y ) − −e cos(y ) + e y cos(y ) dy . Z 2 e y cos(y ) dy = e y sin(y ) + e y cos(y ) Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = e y , dv = sin(y ) dy , ⇒ du = e y dy , v = − cos(y ). Z Z h i y y y e cos(y ) dy = e sin(y ) − −e cos(y ) + e y cos(y ) dy . Z 2 Z e y cos(y ) dy = e y sin(y ) + e y cos(y ) e y cos(y ) = ey sin(y ) + cos(y ) . 2 Substitution and integration by parts Example Z cos ln(x) dx. Z Z e y cos(y ) dy = e y sin(y ) − e y sin(y ) dy . Solution: Recall: Evaluate I = One more integration by parts, u = e y , dv = sin(y ) dy , ⇒ du = e y dy , v = − cos(y ). Z Z h i y y y e cos(y ) dy = e sin(y ) − −e cos(y ) + e y cos(y ) dy . Z 2 e y cos(y ) dy = e y sin(y ) + e y cos(y ) ey sin(y ) + cos(y ) . 2 Z x We conclude: cos ln(x) dx = sin(ln(x))) + cos(ln(x)) . C 2 Z e y cos(y ) = Trigonometric integrals (Sect. 8.2) I Product of sines and cosines. I Eliminating square roots. I Integrals of tangents and secants. I Products of sines and cosines. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = (a) If m = 2k + 1, (odd), sinm (x) cosn (x) dx. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Z k I = 1 − cos2 (x) cosn (x) sin(x) dx. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Z k I = 1 − cos2 (x) cosn (x) sin(x) dx. Substitute u = cos(x), so Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Z k I = 1 − cos2 (x) cosn (x) sin(x) dx. Substitute u = cos(x), so du = − sin(x) dx, Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Z k I = 1 − cos2 (x) cosn (x) sin(x) dx. Substitute u = cos(x), so du = − sin(x) dx, hence Z I = − (1 − u 2 )k u n du. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (a) If m = 2k + 1, (odd), then sin(2k+1) (x) = sin2 (x) sin(x); Z k I = 1 − cos2 (x) cosn (x) sin(x) dx. Substitute u = cos(x), so du = − sin(x) dx, hence Z I = − (1 − u 2 )k u n du. We now need to integrate a polynomial. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = (b) If n = 2k + 1, (odd), sinm (x) cosn (x) dx. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Z k I = sinm (x) 1 − sin2 (x) cos(x) dx. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Z k I = sinm (x) 1 − sin2 (x) cos(x) dx. Substitute u = sin(x), Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Z k I = sinm (x) 1 − sin2 (x) cos(x) dx. Substitute u = sin(x), so du = cos(x) dx, Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Z k I = sinm (x) 1 − sin2 (x) cos(x) dx. Substitute u = sin(x), so du = cos(x) dx, hence Z I = u m (1 − u 2 )k du. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. k (b) If n = 2k + 1, (odd), then cos(2k+1) (x) = cos2 (x) cos(x); Z k I = sinm (x) 1 − sin2 (x) cos(x) dx. Substitute u = sin(x), so du = cos(x) dx, hence Z I = u m (1 − u 2 )k du. Again, we now need to integrate a polynomial. Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z I = sin2k (x) cos2` (x) dx Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z Z k ` 2k 2` sin2 (x) cos2 (x) dx. I = sin (x) cos (x) dx = Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z Z k ` 2k 2` sin2 (x) cos2 (x) dx. I = sin (x) cos (x) dx = Now use the identities sin2 (x) = 1 1 − cos(2x) , 2 Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z Z k ` 2k 2` sin2 (x) cos2 (x) dx. I = sin (x) cos (x) dx = Now use the identities sin2 (x) = 1 1 − cos(2x) , 2 cos2 (x) = 1 1 + cos(2x) . 2 Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z Z k ` 2k 2` sin2 (x) cos2 (x) dx. I = sin (x) cos (x) dx = Now use the identities sin2 (x) = 1 1 − cos(2x) , 2 cos2 (x) = Depending whether k or ` are odd, 1 1 + cos(2x) . 2 Product of sines and cosines Remark: There is a procedure to compute integrals of the form Z I = sinm (x) cosn (x) dx. (c) If both m and n are even, say m = 2k and n = 2`, then Z Z k ` 2k 2` sin2 (x) cos2 (x) dx. I = sin (x) cos (x) dx = Now use the identities sin2 (x) = 1 1 − cos(2x) , 2 cos2 (x) = 1 1 + cos(2x) . 2 Depending whether k or ` are odd, repeat (a), (b) or (c). Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z I = sin4+1 (x) dx Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), then du = − sin(x) dx, Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), then du = − sin(x) dx, Z I =− 1 − u 2 )2 du Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), then du = − sin(x) dx, Z Z I =− 1 − u 2 )2 du = − (1 − 2u 2 + u 4 ) du. Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), then du = − sin(x) dx, Z Z I =− 1 − u 2 )2 du = − (1 − 2u 2 + u 4 ) du. I = −u + 2 u3 u5 − + c. 3 5 Product of sines and cosines Example Z Evaluate I = sin5 (x) dx. Solution: Since m = 5 is odd, we write it as m = 4 + 1, Z Z 2 I = sin4+1 (x) dx = sin2 (x) sin(x) dx Z 2 I = 1 − cos2 (x) sin(x) dx. Introduce the substitution u = cos(x), then du = − sin(x) dx, Z Z I =− 1 − u 2 )2 du = − (1 − 2u 2 + u 4 ) du. u3 u5 − + c. 3 5 2 1 We conclude I = − cos(x) + cos3 (x) − cos5 (x) + c. 3 5 I = −u + 2 C Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z 3 I = sin2 (x) dx Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z Z 3 3 1 [1 − cos(2x)] dx I = sin2 (x) dx = 2 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z Z 3 3 1 [1 − cos(2x)] dx I = sin2 (x) dx = 2 I = 1 8 Z 1 − 3 cos(2x) + 3 cos2 (2x) − cos3 (2x) dx. Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z Z 3 3 1 [1 − cos(2x)] dx I = sin2 (x) dx = 2 I = 1 8 Z 1 − 3 cos(2x) + 3 cos2 (2x) − cos3 (2x) dx. Z The first two terms are: (1 − 3 cos(2x)) dx = x − 3 sin(2x). 2 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z Z 3 3 1 [1 − cos(2x)] dx I = sin2 (x) dx = 2 I = 1 8 Z 1 − 3 cos(2x) + 3 cos2 (2x) − cos3 (2x) dx. Z The first two terms are: (1 − 3 cos(2x)) dx = x − The third term can be integrated as follows, Z Z 1 2 (1 + cos(4x)) dx 3 cos (2x) dx = 3 2 3 sin(2x). 2 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: Since m = 6 is even, we write it as m = 2(3), Z Z 3 3 1 [1 − cos(2x)] dx I = sin2 (x) dx = 2 I = 1 8 Z 1 − 3 cos(2x) + 3 cos2 (2x) − cos3 (2x) dx. Z The first two terms are: (1 − 3 cos(2x)) dx = x − 3 sin(2x). 2 The third term can be integrated as follows, Z Z 1 3 1 2 (1 + cos(4x)) dx = 3 cos (2x) dx = 3 x + sin(4x) . 2 2 4 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z J = cos2 (2x) cos(2x) dx Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), then du = 2 cos(2x) dx. Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), then du = 2 cos(2x) dx. Z 1 J= (1 − u 2 ) du 2 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), then du = 2 cos(2x) dx. Z 1 1 u3 J= (1 − u 2 ) du = u− 2 2 3 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), then du = 2 cos(2x) dx. Z 1 1 u3 1 1 J= (1 − u 2 ) du = u− = sin(2x) − sin3 (2x). 2 2 3 2 6 Product of sines and cosines Example Z Evaluate I = sin6 (x) dx. Solution: So far we have found that i 1 Z 1h 3 3 1 I = x − sin(2x) + x + sin(4x) − cos3 (2x) dx. 8 2 2 4 8 Z The last term J = cos3 (2x) dx can we computed as follows, Z Z J = cos2 (2x) cos(2x) dx = 1 − sin2 (2x) cos(2x) dx. Introduce the substitution u = sin(2x), then du = 2 cos(2x) dx. Z 1 1 u3 1 1 J= (1 − u 2 ) du = u− = sin(2x) − sin3 (2x). 2 2 3 2 6 h i 1 3 3 1 1 3 I = x − sin(2x) + x + sin(4x) − sin(2x) + sin3 (2x) + c. 8 2 2 8 2 6 Trigonometric integrals (Sect. 8.2) I Product of sines and cosines. I Eliminating square roots. I Integrals of tangents and secants. I Products of sines and cosines. Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), cos2 (θ) = 1 − sin2 (θ). Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), Example Z Evaluate I = 0 π/8 p 1 + cos(8x) dx. cos2 (θ) = 1 − sin2 (θ). Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), cos2 (θ) = 1 − sin2 (θ). Example Z Evaluate I = π/8 p 1 + cos(8x) dx. 0 Solution: Use that : 1 + cos(8x) = 2 cos2 (4x). Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), cos2 (θ) = 1 − sin2 (θ). Example Z Evaluate I = π/8 p 1 + cos(8x) dx. 0 Solution: Use that : 1 + cos(8x) = 2 cos2 (4x). Hence, √ Z π/8 I = 2 cos(4x) dx 0 Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), cos2 (θ) = 1 − sin2 (θ). Example Z Evaluate I = π/8 p 1 + cos(8x) dx. 0 Solution: Use that : 1 + cos(8x) = 2 cos2 (4x). Hence, √ π/8 √ Z π/8 2 sin(4x) I = 2 cos(4x) dx = 4 0 0 Eliminating square roots Remarks: I Recall the double angle identities: sin2 (θ) = I 1 1 − cos(2θ) , 2 cos2 (θ) = 1 1 + cos(2θ) . 2 These identities can be used to simplify certain square roots. The same holds for Pythagoras Theorem, sin2 (θ) = 1 − cos2 (θ), cos2 (θ) = 1 − sin2 (θ). Example Z Evaluate I = π/8 p 1 + cos(8x) dx. 0 Solution: Use that : 1 + cos(8x) = 2 cos2 (4x). Hence, √ √ π/8 √ Z π/8 2 2 sin(4x) ⇒ I = . I = 2 cos(4x) dx = 4 4 0 0 Trigonometric integrals (Sect. 8.2) I Product of sines and cosines. I Eliminating square roots. I Integrals of tangents and secants. I Products of sines and cosines. Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, the second from Pythagoras Theorem. Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, the second from Pythagoras Theorem. These identities can be used to compute Z I = tan2k (x) dx, k ∈ N. Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, the second from Pythagoras Theorem. These identities can be used to compute Z I = tan2k (x) dx, k ∈ N. Example Z Evaluate I = tan2 (x) dx. Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, the second from Pythagoras Theorem. These identities can be used to compute Z I = tan2k (x) dx, k ∈ N. Example Z Evaluate I = tan2 (x) dx. Solution: The identity on the far left above implies Z I = tan0 (x) − 1 dx Integrals of tangents and secants Remark: Recall the identities: tan0 (x) = sec2 (x) = tan2 (x) + 1. First equation comes from quotient rule, the second from Pythagoras Theorem. These identities can be used to compute Z I = tan2k (x) dx, k ∈ N. Example Z Evaluate I = tan2 (x) dx. Solution: The identity on the far left above implies Z I = tan0 (x) − 1 dx ⇒ I = tan(x) − x + c. C Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z I = tan(2k−2) (x) tan2 (x) dx Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − Z tan(2k−2) (x) dx. Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − In the first term on the right, Z tan(2k−2) (x) dx. Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 Z (x) tan (x) dx − In the first term on the right, u = tan(x), tan(2k−2) (x) dx. Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − Z tan(2k−2) (x) dx. In the first term on the right, u = tan(x), then du = tan0 (x) dx, Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − Z tan(2k−2) (x) dx. In the first term on the right, u = tan(x), then du = tan0 (x) dx, Z Z tan(2k−2) (x) tan0 (x) dx = u (2k−2) du Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − Z tan(2k−2) (x) dx. In the first term on the right, u = tan(x), then du = tan0 (x) dx, Z Z u (2k−1) tan(2k−2) (x) tan0 (x) dx = u (2k−2) du = . (2k − 1) Integrals of tangents and secants Example Z Find a recurrence formula to compute I = tan2k (x) dx, k ∈ N. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Z Z (2k−2) 2 I = tan (x) tan (x) dx = tan(2k−2) (x) tan0 (x) − 1 dx Z I = (2k−2) tan 0 (x) tan (x) dx − Z tan(2k−2) (x) dx. In the first term on the right, u = tan(x), then du = tan0 (x) dx, Z Z u (2k−1) tan(2k−2) (x) tan0 (x) dx = u (2k−2) du = . (2k − 1) Z 1 (2k−1) C I = tan (x) − tan2(k−1) (x) dx. (2k − 1) Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z I = sec(x) sec2 (x) dx Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrate by parts, u = sec(x), dv = tan0 (x) dx Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrate by parts, u = sec(x), dv = tan0 (x) dx ⇒ du = sec0 (x) dx, v = tan(x). Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrate by parts, u = sec(x), dv = tan0 (x) dx ⇒ du = sec0 (x) dx, v = tan(x). Z I = sec(x) tan(x) − tan(x) sec0 (x) dx. Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrate by parts, u = sec(x), dv = tan0 (x) dx ⇒ du = sec0 (x) dx, v = tan(x). Z I = sec(x) tan(x) − tan(x) sec0 (x) dx. Recall: sec0 (x) = sin(x) cos2 (x) Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Solution: Recall: tan0 (x) = sec2 (x) = tan2 (x) + 1. Rewrite the integral as follows, Z Z 2 I = sec(x) sec (x) dx = sec(x) tan0 (x) dx. Where we used that sec2 (x) = tan0 (x). Integrate by parts, u = sec(x), dv = tan0 (x) dx ⇒ du = sec0 (x) dx, v = tan(x). Z I = sec(x) tan(x) − tan(x) sec0 (x) dx. Recall: sec0 (x) = sin(x) = sec(x) tan(x). cos2 (x) Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Z Solution: I = sec(x) tan(x) − know sec0 (x) = sec(x) tan(x). tan(x) sec0 (x) dx, and we also Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Z Solution: I = sec(x) tan(x) − tan(x) sec0 (x) dx, and we also know sec0 (x) = sec(x) tan(x). Z I = sec(x) tan(x) − sec(x) tan2 (x) dx Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Z Solution: I = sec(x) tan(x) − tan(x) sec0 (x) dx, and we also know sec0 (x) = sec(x) tan(x). Z I = sec(x) tan(x) − sec(x) tan2 (x) dx Z I = sec(x) tan(x) − sec(x) (sec2 (x) − 1) dx Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Z Solution: I = sec(x) tan(x) − tan(x) sec0 (x) dx, and we also know sec0 (x) = sec(x) tan(x). Z I = sec(x) tan(x) − sec(x) tan2 (x) dx Z I = sec(x) tan(x) − sec(x) (sec2 (x) − 1) dx Z 3 sec (x) dx = sec(x) tan(x) + Z Z sec(x) dx − sec3 (x) dx. Integrals of tangents and secants Example Z Evaluate I = sec3 (x) dx. Z Solution: I = sec(x) tan(x) − tan(x) sec0 (x) dx, and we also know sec0 (x) = sec(x) tan(x). Z I = sec(x) tan(x) − sec(x) tan2 (x) dx Z I = sec(x) tan(x) − sec(x) (sec2 (x) − 1) dx Z 3 Z sec (x) dx = sec(x) tan(x) + Z sec3 (x) dx = Z sec(x) dx − sec3 (x) dx. 1 1 sec(x) tan(x) + ln sec(x) + tan(x) + c. 2 2 Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. Proof: Z I = sec(x) dx Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. Proof: Z I = Z sec(x) dx = 1 dx cos(x) Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. Proof: Z I = Z I = Z sec(x) dx = 1 dx cos(x) [1 + sin(x)] cos(x) 1 dx cos(x) cos(x) [1 + sin(x)] Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. Proof: Z I = Z Z sec(x) dx = 1 dx cos(x) [1 + sin(x)] cos(x) 1 dx cos(x) cos(x) [1 + sin(x)] Z [1 + sin(x)] 1 I = dx cos2 (x) [1 + sin(x)] cos(x) Z 1 [1 + sin(x)] 0 I = [1 + sin(x)] dx cos(x) cos(x) I = Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. I = Z [1 + sin(x)] 0 1 [1 + sin(x)] dx cos(x) cos(x) Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. I = Z I = Z [1 + sin(x)] 0 1 [1 + sin(x)] dx cos(x) cos(x) 0 sec(x) + tan(x) Substitute u = sec(x) + tan(x), then 1 dx sec(x) + tan(x) Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. I = Z I = Z [1 + sin(x)] 0 1 [1 + sin(x)] dx cos(x) cos(x) 0 sec(x) + tan(x) Substitute u = sec(x) + tan(x), then Z du I = u 1 dx sec(x) + tan(x) Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. I = Z I = Z [1 + sin(x)] 0 1 [1 + sin(x)] dx cos(x) cos(x) 0 sec(x) + tan(x) 1 dx sec(x) + tan(x) Substitute u = sec(x) + tan(x), then Z du I = = ln(u) + c. u Integrals of tangents and secants Z Recall: sec(x) dx = ln sec(x) + tan(x) + c. I = Z I = Z [1 + sin(x)] 0 1 [1 + sin(x)] dx cos(x) cos(x) 0 sec(x) + tan(x) 1 dx sec(x) + tan(x) Substitute u = sec(x) + tan(x), then Z du I = = ln(u) + c. u So we obtain the formula, Z sec(x) dx = ln sec(x) + tan(x) + c. Trigonometric integrals (Sect. 8.2) I Product of sines and cosines. I Eliminating square roots. I Integrals of tangents and secants. I Products of sines and cosines. Products of sines and cosines Remark: The identities 1 cos(θ − φ) − cos(θ + φ) 2 1 sin(θ) cos(φ) = sin(θ − φ) + sin(θ + φ) 2 1 cos(θ) cos(φ) = cos(θ − φ) + cos(θ + φ) . 2 sin(θ) sin(φ) = can be used to compute integrals of the form Z Z sin(mx) sin(nx) dx, sin(mx) cos(nx) dx, Z cos(mx) cos(nx) dx. Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. Solution: Recall: sin(θ) cos(φ) = 1 sin(θ − φ) + sin(θ + φ) . 2 Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. 1 Solution: Recall: sin(θ) cos(φ) = sin(θ − φ) + sin(θ + φ) . 2 The formula above implies, Z 1 I = sin((3 − 4)x) + sin((3 + 4)x) dx, 2 Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. 1 Solution: Recall: sin(θ) cos(φ) = sin(θ − φ) + sin(θ + φ) . 2 The formula above implies, Z 1 I = sin((3 − 4)x) + sin((3 + 4)x) dx, 2 that is, 1 I = 2 Z − sin(x) + sin(7x) dx. Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. 1 Solution: Recall: sin(θ) cos(φ) = sin(θ − φ) + sin(θ + φ) . 2 The formula above implies, Z 1 I = sin((3 − 4)x) + sin((3 + 4)x) dx, 2 that is, 1 I = 2 Z − sin(x) + sin(7x) dx. This integral is simple to do, Products of sines and cosines Example Z Evaluate: I = sin(3x) cos(4x) dx. 1 Solution: Recall: sin(θ) cos(φ) = sin(θ − φ) + sin(θ + φ) . 2 The formula above implies, Z 1 I = sin((3 − 4)x) + sin((3 + 4)x) dx, 2 that is, 1 I = 2 Z − sin(x) + sin(7x) dx. This integral is simple to do, I = i 1h 1 cos(x) − cos(7x) + c. 2 7 C Trigonometric substitutions (Sect. 8.3) I I I I Substitutions to cancel the square root √ Integrals involving a2 − x 2 : Use x = a sin(θ). √ Integrals involving a2 + x 2 : Use x = a tan(θ). √ Integrals involving x 2 − a2 : Use x = a sec(θ). Substitutions to cancel the square root Remark: Integrals involving substitution x = a sin(θ). √ a2 − x 2 can be found with the Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q p 2 2 a − x = a2 − a2 sin2 (θ) Remark: Integrals involving Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) Remark: Integrals involving Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) = |a| | cos(θ)|. Remark: Integrals involving Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) = |a| | cos(θ)|. Remark: Integrals involving We conclude that √ a2 − x 2 = |a| | cos(θ)|. Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) = |a| | cos(θ)|. Remark: Integrals involving We conclude that √ a2 − x 2 = |a| | cos(θ)|. Notice: The substitution x = a cos(θ) also works. Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) = |a| | cos(θ)|. Remark: Integrals involving We conclude that √ a2 − x 2 = |a| | cos(θ)|. Notice: The substitution x = a cos(θ) also works. Remark: We have used Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1. Substitutions to cancel the square root √ a2 − x 2 can be found with the substitution x = a sin(θ). Indeed, q q p 2 2 2 2 2 a − x = a − a sin (θ) = |a| 1 − sin2 (θ) = |a| | cos(θ)|. Remark: Integrals involving We conclude that √ a2 − x 2 = |a| | cos(θ)|. Notice: The substitution x = a cos(θ) also works. Remark: We have used Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1. To compute dx we will need the following derivatives: sin0 (θ) = cos(θ), cos0 (θ) = − sin(θ). Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q p 2 2 a + x = a2 + a2 tan2 (θ) Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Indeed, q p 2 2 x − a = a2 sec2 (θ) − a2 Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Indeed, q q p 2 2 2 2 2 x − a = a sec (θ) − a = |a| sec2 (θ) − 1 Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Indeed, q q p 2 2 2 2 2 x − a = a sec (θ) − a = |a| sec2 (θ) − 1 = |a| | tan(θ)|. Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Indeed, q q p 2 2 2 2 2 x − a = a sec (θ) − a = |a| sec2 (θ) − 1 = |a| | tan(θ)|. √ Hence, x 2 − a2 = |a| | tan(θ)|, Substitutions to cancel the square root Recall: sec2 (θ) = tan2 (θ) + 1 = tan0 (θ), sec0 (θ) = sec(θ) tan(θ). √ Remark: Integrals involving a2 + x 2 can be found with the substitution x = a tan(θ). Indeed, q q p 2 2 2 2 2 a + x = a + a tan (θ) = |a| 1 + tan2 (θ) = |a| | sec(θ)|. √ Hence, a2 + x 2 = |a| | sec(θ)|, and dx = a sec2 (θ) dθ. √ Remark: Integrals involving x 2 − a2 can be found with the substitution x = a sec(θ). Indeed, q q p 2 2 2 2 2 x − a = a sec (θ) − a = |a| sec2 (θ) − 1 = |a| | tan(θ)|. √ Hence, x 2 − a2 = |a| | tan(θ)|, and dx = a sec(θ) tan(θ) dθ. Trigonometric substitutions (Sect. 8.3) I I I I Substitutions to cancel the square root √ Integrals involving a2 − x 2 : Use x = a sin(θ). √ Integrals involving a2 + x 2 : Use x = a tan(θ). √ Integrals involving x 2 − a2 : Use x = a sec(θ). Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = −5 p 25 − x 2 dx. Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 ⇒ | cos(θ)| = q 1 − sin2 (θ). Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 Substitute: x = 5 sin(θ), ⇒ | cos(θ)| = q 1 − sin2 (θ). Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 ⇒ | cos(θ)| = q Substitute: x = 5 sin(θ), then dx = 5 cos(θ) dθ. 1 − sin2 (θ). Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 ⇒ | cos(θ)| = q 1 − sin2 (θ). Substitute: x = 5 sin(θ), then dx = 5 cos(θ) dθ. Hence, Z π/2 q I = 25 − 25 sin2 (θ) 5 cos(θ) dθ , −π/2 Integrals involving √ a2 − x 2 Example Z 5 Evaluate I = p 25 − x 2 dx. −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 ⇒ | cos(θ)| = q 1 − sin2 (θ). Substitute: x = 5 sin(θ), then dx = 5 cos(θ) dθ. Hence, Z π/2 q I = 25 − 25 sin2 (θ) 5 cos(θ) dθ , −π/2 Z π/2 I =5 −π/2 q 25 1 − sin2 (θ) cos(θ) dθ, Integrals involving √ a2 − x 2 Example Z 5 p 25 − x 2 dx. Evaluate I = −5 Solution: Recall Pythagoras Theorem: sin2 (θ) + cos2 (θ) = 1 ⇒ | cos(θ)| = q 1 − sin2 (θ). Substitute: x = 5 sin(θ), then dx = 5 cos(θ) dθ. Hence, Z π/2 q I = 25 − 25 sin2 (θ) 5 cos(θ) dθ , −π/2 Z π/2 I =5 q 25 1 − sin2 (θ) cos(θ) dθ, −π/2 I = 52 Z π/2 −π/2 q 1 − sin2 (θ) cos(θ) dθ. Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 −π/2 q 1 − sin2 (θ) cos(θ) dθ. Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 q 1 − sin2 (θ) cos(θ) dθ. −π/2 2 Z π/2 | cos(θ)| cos(θ) dx I =5 −π/2 Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 q 1 − sin2 (θ) cos(θ) dθ. −π/2 2 Z π/2 2 Z π/2 | cos(θ)| cos(θ) dx = 5 I =5 −π/2 −π/2 cos2 (θ) dθ. Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 q 1 − sin2 (θ) cos(θ) dθ. −π/2 2 Z π/2 2 π/2 | cos(θ)| cos(θ) dx = 5 I =5 −π/2 −π/2 25 I = 2 Z Z π/2 −π/2 1 + cos(2θ) dθ cos2 (θ) dθ. Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 q 1 − sin2 (θ) cos(θ) dθ. −π/2 2 Z π/2 2 π/2 | cos(θ)| cos(θ) dx = 5 I =5 Z π/2 −π/2 cos2 (θ) dθ. −π/2 −π/2 25 I = 2 Z 25 sin(2θ) π/2 1 + cos(2θ) dθ = θ+ . 2 2 −π/2 Integrals involving √ a2 − x 2 Example Z π/2 Evaluate I = p 25 − x 2 dx. −π/2 Solution: Recall: I = 52 Z π/2 q 1 − sin2 (θ) cos(θ) dθ. −π/2 2 Z π/2 2 π/2 | cos(θ)| cos(θ) dx = 5 I =5 Z cos2 (θ) dθ. −π/2 −π/2 25 I = 2 Z π/2 −π/2 25 sin(2θ) π/2 1 + cos(2θ) dθ = θ+ . 2 2 −π/2 We conclude that I = 25π . 2 C Trigonometric substitutions (Sect. 8.3) I I I I Substitutions to cancel the square root √ Integrals involving a2 − x 2 : Use x = a sin(θ). √ Integrals involving a2 + x 2 : Use x = a tan(θ). √ Integrals involving x 2 − a2 : Use x = a sec(θ). Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, that is dx = 2 sec2 (θ) dθ. Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, that is dx = 2 sec2 (θ) dθ. 23 tan3 (θ) Z I = p 4 tan2 (θ) + 4 2 sec2 (θ) dθ Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, that is dx = 2 sec2 (θ) dθ. 23 tan3 (θ) Z I = p 4 tan2 (θ) + 4 2 2 sec (θ) dθ = 16 Z tan3 (θ) sec2 (θ) p dθ. 4 [tan2 (θ) + 1] Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, that is dx = 2 sec2 (θ) dθ. 23 tan3 (θ) Z I = p 4 tan2 (θ) + 4 16 I = 2 Z 2 2 sec (θ) dθ = 16 tan3 (θ) sec2 (θ) dθ | sec(θ)| Z tan3 (θ) sec2 (θ) p dθ. 4 [tan2 (θ) + 1] Integrals involving √ a2 + x 2 Example Z Evaluate I = x 3 dx √ . x2 + 4 Solution: The only thing that matters to choose the substitution is the argument of the square root. In this case we need to recall 1 + tan2 (θ) = sec2 (θ). Hence the substitution x = 2 tan(θ), for θ ∈ (−π/2, π/2). Then, dx = 2 tan0 (θ) dθ, that is dx = 2 sec2 (θ) dθ. 23 tan3 (θ) Z I = p 4 tan2 (θ) + 4 16 I = 2 Z Z 2 2 sec (θ) dθ = 16 tan3 (θ) sec2 (θ) dθ = 8 | sec(θ)| Z tan3 (θ) sec2 (θ) p dθ. 4 [tan2 (θ) + 1] tan3 (θ) sec2 (θ) dθ. sec(θ) Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Evaluate I = Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z I = 8 tan3 (θ) sec(θ) dθ Z Evaluate I = Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Now recall tan(θ) sec(θ) = sec0 (θ), Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Now recall tan(θ) sec(θ) = sec0 (θ), and that tan2 (θ) = sec2 (θ) − 1. Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Now recall tan(θ) sec(θ) = sec0 (θ), and that tan2 (θ) = sec2 (θ) − 1. Z 2 I =8 sec (θ) − 1 sec0 (θ) dθ. Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Now recall tan(θ) sec(θ) = sec0 (θ), and that tan2 (θ) = sec2 (θ) − 1. Z 2 I =8 sec (θ) − 1 sec0 (θ) dθ. We now do a substitution: u = sec(θ), Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z tan3 (θ) sec2 (θ) Solution: Recall: I = 8 dθ. sec(θ) Z Z I = 8 tan3 (θ) sec(θ) dθ = 8 tan2 (θ) tan(θ) sec(θ) dθ. Z Evaluate I = Now recall tan(θ) sec(θ) = sec0 (θ), and that tan2 (θ) = sec2 (θ) − 1. Z 2 I =8 sec (θ) − 1 sec0 (θ) dθ. We now do a substitution: u = sec(θ), hence du = sec0 (θ) dθ. Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z I = 8 (u 2 − 1) du Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Substitute back u = sec(θ), Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Substitute back u = sec(θ), that is, 8 I = sec3 (θ) − 8 sec(θ) + c. 3 Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Substitute back u = sec(θ), that is, 8 I = sec3 (θ) − 8 sec(θ) + c. 3 Still substitute back x = 2 tan(θ), Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Substitute back u = sec(θ), that is, 8 I = sec3 (θ) − 8 sec(θ) + c. 3 Still substitute back x = 2 tan(θ), that is θ = arctan(x/2), Integrals involving √ a2 + x 2 Example x 3 dx √ . x2 + 4 Z 2 Solution: Recall: I = 8 sec (θ) − 1 sec0 (θ) dθ together with Z Evaluate I = the substitution: u = sec(θ), so du = sec0 (θ) dθ. Z u3 −u+c . I = 8 (u 2 − 1) du = 8 3 Substitute back u = sec(θ), that is, 8 I = sec3 (θ) − 8 sec(θ) + c. 3 Still substitute back x = 2 tan(θ), that is θ = arctan(x/2), hence 8 I = sec3 arctan(x/2) − 8 sec(arctan(x/2) + c. C 3 Trigonometric substitutions (Sect. 8.3) I I I I Substitutions to cancel the square root √ Integrals involving a2 − x 2 : Use x = a sin(θ). √ Integrals involving a2 + x 2 : Use x = a tan(θ). √ Integrals involving x 2 − a2 : Use x = a sec(θ). Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Z 2 p I = 3 sec0 (θ) dθ. 2 2 9 sec (θ) 9 sec (θ) − 9 Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Z 2 p I = 3 sec0 (θ) dθ. 2 2 9 sec (θ) 9 sec (θ) − 9 2 I = 9 Z sec0 (θ) dθ p sec2 (θ) sec2 (θ) − 1 Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Z 2 p I = 3 sec0 (θ) dθ. 2 2 9 sec (θ) 9 sec (θ) − 9 2 I = 9 Z sec0 (θ) dθ 2 p = 2 2 9 sec (θ) sec (θ) − 1 Z sec0 (θ) dθ . sec2 (θ)| tan(θ)| Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Z 2 p I = 3 sec0 (θ) dθ. 2 2 9 sec (θ) 9 sec (θ) − 9 2 I = 9 Z sec0 (θ) dθ 2 p = 2 2 9 sec (θ) sec (θ) − 1 Recall: sec0 (θ) = sec(θ) tan(θ), Z sec0 (θ) dθ . sec2 (θ)| tan(θ)| Integrals involving √ x 2 − a2 Example Z Evaluate I = x2 2 dx √ , for x > 0. x2 − 9 Solution: Once again, it only matters what is in the square root. We need to recall sec2 (θ) = tan2 (θ) + 1, so sec2 (θ) − 1 = tan2 (θ). The substitution is x = 3 sec(θ), hence dx = 3 sec0 (θ) dθ. Z 2 p I = 3 sec0 (θ) dθ. 2 2 9 sec (θ) 9 sec (θ) − 9 2 I = 9 Z sec0 (θ) dθ 2 p = 2 2 9 sec (θ) sec (θ) − 1 Z sec0 (θ) dθ . sec2 (θ)| tan(θ)| Recall: sec0 (θ) = sec(θ) tan(θ), and x > 0 implies tan(θ) > 0. Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = x2 Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ sec2 (θ) tan(θ) Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 Z dθ sec(θ) Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 Z 2 dθ = sec(θ) 9 Z cos(θ) dθ. Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 I = Z 2 dθ = sec(θ) 9 2 sin(θ) + c. 9 Z cos(θ) dθ. Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 I = Substitute back x = 3 sec(θ), Z 2 dθ = sec(θ) 9 2 sin(θ) + c. 9 Z cos(θ) dθ. Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 I = Z 2 dθ = sec(θ) 9 Z cos(θ) dθ. 2 sin(θ) + c. 9 Substitute back x = 3 sec(θ), that is, θ = arcsec(x/3). Integrals involving √ x 2 − a2 Example Z 2 dx √ , for x > 0. x2 − 9 Z 2 sec0 (θ) dθ Solution: So, I = , and sec0 (θ) = sec(θ) tan(θ). 9 sec2 (θ) tan(θ) Evaluate I = I = 2 9 Z x2 sec(θ) tan(θ) dθ 2 = sec2 (θ) tan(θ) 9 I = Z 2 dθ = sec(θ) 9 Z cos(θ) dθ. 2 sin(θ) + c. 9 Substitute back x = 3 sec(θ), that is, θ = arcsec(x/3). I = 2 sin arcsec(x/3) + c. 9 C