Download MTH 112 Practice Test 3 summer 2012.tst

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MTH 112 Practice Problems for Test 3 - Summer 2012
Identify the intervals where the function is increasing, decreasing, or constant.
1)
5
y
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 x
-1
-2
-3
-4
-5
Find and simplify the difference quotient f(x + h) - f(x)
, h≠ 0 for the given function.
h
2) f(x) = 6x + 7
3) f(x) = x2 + 9x - 8
Find the inverse of the one-to-one function.
4) f(x) = 8x + 4
5) f(x) = 2x - 5
7
3
6) f(x) = x + 8
7) f(x) = (x + 2)3
Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate
logarithmic expressions without using a calculator.
8) log (3x)
3
9) log
10) ln 5
125
x
e5
9
11) logn x8
1
12) log 13 -2
2
13) log
7
5
y
14) logb (yz 4 )
15) log
16) log
17) log
5
7 · 11
13
3
x + 2
x5
2
x
4
18)
3
log2 4 x y
4
Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose
coefficient is 1. Where possible, evaluate logarithmic expressions.
1
19) (log9 x + log9 y) - 4 log9 (x + 8)
5
20) 9ln (x - 2) - 5 ln x
21) loga 51 + loga 3
22) ln 24 - ln 3
23)
1
2
loga x + loga y
9
3
24) ln (x2 - 4) - ln (x + 2)
Use common logarithms or natural logarithms and a calculator to evaluate to four decimal places
25) log 40.1
15
26) log
27) log
π
17
0.5
20
2
Solve the equation by expressing each side as a power of the same base and then equating exponents.
28) 3 (1 + 2x) = 243
29) 3 (6 - 3x) = 1
27
30) 5 (x - 1)/4 = 5
31) 16x + 9 = 64x - 5
Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the
solution.
32) 10x = 3.06
33) 9ex = 25
34) e2x = 4
35) 7 x = 6 x + 7
Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic
expressions. Give the exact answer.
36) log (x - 2) = 3
2
37) log (x + 1) + log (x - 5) = 4
2
2
38) log 9 + log x = 1
4
4
39) log (x + 4) = log (4x - 5)
40) log x2 = log (8x + 9)
2
2
41) log
21
(x + 84) = 3 - log
21
x
Write the standard form of the equation of the circle with the given center and radius.
42) (-7, -4); 12
43) (-8, 0); 2
44) (-3, -6); 5
Find the center and the radius of the circle.
45) (x + 7)2 + (y + 8)2 = 49
3
Graph the equation and state its domain and range. Use interval notation
46) x2 + y 2 = 100
10
y
5
-10
-5
5
10 x
5
10 x
-5
-10
Graph the equation.
47) (x - 5)2 + (y - 3)2 = 9
10
y
5
-10
-5
-5
-10
48) x2 + y 2 - 4x - 6y + 9 = 0
10
y
5
-10
-5
5
10 x
-5
-10
Solve.
49) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested
money in a money market account. The value of your investment t years after 2000 is given by the exponential
growth model A = 3300e0.053t. How much did you initially invest in the account?
4
Solve the problem.
50) A sample of 550 grams of radioactive substance decays according to the function A(t) = 550e-0.028t, where t is
the time in years. How much of the substance will be left in the sample after 40 years? Round to the nearest
whole gram.
Solve.
51) The population of a small country increases according to the function B = 1,900,000e0.04t, where t is measured
in years. How many people will the country have after 8 years?
Solve the problem.
52) The number of acres in a landfill is given by the function B = 2200e-0.02t, where t is measured in years. How
many acres will the landfill have after 6 years? (Round to the nearest acre.)
53) The formula A = 106e0.032t models the population of a particular city, in thousands, t years after 1998. When
will the population of the city reach 120 thousand?
Solve the system by the substitution method.
54) x + y = 6
y = x2 - 12x + 36
55) x2 + y2 = 61
x + y = -11
Solve the system by the addition method.
56) x2 + y2 = 9
x2 - y2 = 9
57) x2 + y2 = 25
25x2 + 16y2 = 400
58) x2 + y2 - 8x - 8y + 31 = 0
x2 - y2 - 8x + 8y - 1 = 0
Graph the solution set of the system of inequalities or indicate that the system has no solution.
59) 3x - y ≤ -3
x + 4y ≥ -4
y
10
8
6
4
2
-10 -8 -6 -4 -2
-2
2
4
6
8 10 x
-4
-6
-8
-10
5
60) -1 ≤ y < 4
y
10
8
6
4
2
-10 -8 -6 -4 -2-2
-4
2 4
6 8 10
x
4
6
x
10
x
-6
-8
-10
61) y > -1
x ≥ 3
y
6
4
2
-6
-4
-2
2
-2
-4
-6
62) y > x2
3x + 6y ≤ 18
y
10
5
-10
-5
5
-5
-10
Write the augmented matrix for the system of equations.
63) -2x + 5y + 9z = 52
3x + 9y + 8z = 97
8x + 6y + 8z = 88
6
64)
6x + 6z = 90
4y + 7z = 88
4x + 3y + 2z = 68
Solve the system of equations using matrices. Use Gaussian elimination with back -substitution.
65) x + y + z = -1
x - y + 5z = 5
5x + y + z = 19
66) -4x - y - 3z = -22
-4x + 6z = 16
9y + z = 22
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
67) 5x + 2y + z = -11
2x - 3y - z = 17
7x - y = 12
68)
x + y + z = 9
2x - 3y + 4z = 7
x - 4y + 3z = -2
7
Answer Key
Testname: MTH 112 PRACTICE TEST 3 SUMMER 2012
1) increasing (-2, -1) ∪ (3, ∞)
decreasing, (1, 3)
constant, (-1, 1)
Note: Do not use brackets [ ]on these.
2) f(x+h) = 6(x + h) + 7= 6x + 6h + 7
f(x+h) - f(x) =6x+6h+7-(6x+7)
= 6x+6h+7-6x-7
= 6h
f(x+h)-f(x) 6h
= = 6
h
h
30) 3
31) 33
32) 0.49
33) 1.02
34) 0.69
35) 81.36
36) {10}
37) {7}
4
38) { }
9
3) 2x + h + 9
x - 4
4) f-1 (x) = 8
39) 3
40) {9, -1}
41) {63}
42) (x + 7)2 + (y + 4)2 = 144
7x + 5
5) f-1 (x) = 2
43) (x + 8)2 + y 2 = 4
44) (x + 3)2 + (y + 6)2 = 5
6) f-1 (x) = x3 - 8
3
7) f-1 (x) = x - 2
8) 1 + log x
3
9) 3 - log x
5
10) 5 - ln 9
11) 8logn x
45) (-7, -8), r = 7
46)
10
5
12) -2 log 13
2
1
13) log y
5
7
-10
-5
15) log 7 + log 11 - log 13
5
5
5
16) log (x + 2) - 5 log x
3
3
1
17) log x - 2
2
2
10 x
-10
Domain = (-10, 10); Range = (-10, 10)
47)
10
1
1
3
18) log2 x + log2 y - 4
2
4
19) log9 5
-5
14) logb y + 4 logb z
5
y
y
5
xy
(x + 8)4
-10
(x - 2)9
20) ln x5
-5
5
10 x
-5
21) loga 153
-10
22) ln(8)
Domain = (2, 8), Range = (0, 6)
23) loga (x2/3 y1/9 )
24) ln (x - 2)
25) 1.3631
26) 2.4750
27) -4.3219
28) {2}
29) {3}
8
Answer Key
Testname: MTH 112 PRACTICE TEST 3 SUMMER 2012
48)
61)
y
10
y
6
5
4
2
-10
-5
10 x
5
-6
-4
-2
2
4
6
x
10
x
-2
-5
-4
-10
-6
49) $3300.00
50) 179 grams
51) 2,616,543
52) 1951
53) 2002
54) {(5, 1), (6, 0)}
55) {(-5, -6), (-6, -5)}
56) {(3, 0), (-3, 0)}
57) {(0, 5), (0, -5)}
58) {(5, 4), (3, 4)}
59)
62)
y
10
5
-10
-5
5
-5
y
10
-10
8
6
63)
4
-2 5 9 52
3 9 8 97
8 6 8 88
2
-10 -8 -6 -4 -2
-2
2
4
6
8 10 x
64)
-4
6 0 6 90
0 4 7 88
4 3 2 68
65) {(5, -5, -1)}
66) {(2, 2, 4)}
67) ∅
68) Infinitely many solutions.
-6
-8
-10
60)
12
y
10
8
6
4
2
-10 -8 -6 -4 -2-2
2 4
6 8 10
x
-4
-6
-8
-10
-12
9
Related documents