Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 112 Practice Problems for Test 3 - Summer 2012 Identify the intervals where the function is increasing, decreasing, or constant. 1) 5 y 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 Find and simplify the difference quotient f(x + h) - f(x) , h≠ 0 for the given function. h 2) f(x) = 6x + 7 3) f(x) = x2 + 9x - 8 Find the inverse of the one-to-one function. 4) f(x) = 8x + 4 5) f(x) = 2x - 5 7 3 6) f(x) = x + 8 7) f(x) = (x + 2)3 Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. 8) log (3x) 3 9) log 10) ln 5 125 x e5 9 11) logn x8 1 12) log 13 -2 2 13) log 7 5 y 14) logb (yz 4 ) 15) log 16) log 17) log 5 7 · 11 13 3 x + 2 x5 2 x 4 18) 3 log2 4 x y 4 Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions. 1 19) (log9 x + log9 y) - 4 log9 (x + 8) 5 20) 9ln (x - 2) - 5 ln x 21) loga 51 + loga 3 22) ln 24 - ln 3 23) 1 2 loga x + loga y 9 3 24) ln (x2 - 4) - ln (x + 2) Use common logarithms or natural logarithms and a calculator to evaluate to four decimal places 25) log 40.1 15 26) log 27) log π 17 0.5 20 2 Solve the equation by expressing each side as a power of the same base and then equating exponents. 28) 3 (1 + 2x) = 243 29) 3 (6 - 3x) = 1 27 30) 5 (x - 1)/4 = 5 31) 16x + 9 = 64x - 5 Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 32) 10x = 3.06 33) 9ex = 25 34) e2x = 4 35) 7 x = 6 x + 7 Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer. 36) log (x - 2) = 3 2 37) log (x + 1) + log (x - 5) = 4 2 2 38) log 9 + log x = 1 4 4 39) log (x + 4) = log (4x - 5) 40) log x2 = log (8x + 9) 2 2 41) log 21 (x + 84) = 3 - log 21 x Write the standard form of the equation of the circle with the given center and radius. 42) (-7, -4); 12 43) (-8, 0); 2 44) (-3, -6); 5 Find the center and the radius of the circle. 45) (x + 7)2 + (y + 8)2 = 49 3 Graph the equation and state its domain and range. Use interval notation 46) x2 + y 2 = 100 10 y 5 -10 -5 5 10 x 5 10 x -5 -10 Graph the equation. 47) (x - 5)2 + (y - 3)2 = 9 10 y 5 -10 -5 -5 -10 48) x2 + y 2 - 4x - 6y + 9 = 0 10 y 5 -10 -5 5 10 x -5 -10 Solve. 49) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model A = 3300e0.053t. How much did you initially invest in the account? 4 Solve the problem. 50) A sample of 550 grams of radioactive substance decays according to the function A(t) = 550e-0.028t, where t is the time in years. How much of the substance will be left in the sample after 40 years? Round to the nearest whole gram. Solve. 51) The population of a small country increases according to the function B = 1,900,000e0.04t, where t is measured in years. How many people will the country have after 8 years? Solve the problem. 52) The number of acres in a landfill is given by the function B = 2200e-0.02t, where t is measured in years. How many acres will the landfill have after 6 years? (Round to the nearest acre.) 53) The formula A = 106e0.032t models the population of a particular city, in thousands, t years after 1998. When will the population of the city reach 120 thousand? Solve the system by the substitution method. 54) x + y = 6 y = x2 - 12x + 36 55) x2 + y2 = 61 x + y = -11 Solve the system by the addition method. 56) x2 + y2 = 9 x2 - y2 = 9 57) x2 + y2 = 25 25x2 + 16y2 = 400 58) x2 + y2 - 8x - 8y + 31 = 0 x2 - y2 - 8x + 8y - 1 = 0 Graph the solution set of the system of inequalities or indicate that the system has no solution. 59) 3x - y ≤ -3 x + 4y ≥ -4 y 10 8 6 4 2 -10 -8 -6 -4 -2 -2 2 4 6 8 10 x -4 -6 -8 -10 5 60) -1 ≤ y < 4 y 10 8 6 4 2 -10 -8 -6 -4 -2-2 -4 2 4 6 8 10 x 4 6 x 10 x -6 -8 -10 61) y > -1 x ≥ 3 y 6 4 2 -6 -4 -2 2 -2 -4 -6 62) y > x2 3x + 6y ≤ 18 y 10 5 -10 -5 5 -5 -10 Write the augmented matrix for the system of equations. 63) -2x + 5y + 9z = 52 3x + 9y + 8z = 97 8x + 6y + 8z = 88 6 64) 6x + 6z = 90 4y + 7z = 88 4x + 3y + 2z = 68 Solve the system of equations using matrices. Use Gaussian elimination with back -substitution. 65) x + y + z = -1 x - y + 5z = 5 5x + y + z = 19 66) -4x - y - 3z = -22 -4x + 6z = 16 9y + z = 22 Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. 67) 5x + 2y + z = -11 2x - 3y - z = 17 7x - y = 12 68) x + y + z = 9 2x - 3y + 4z = 7 x - 4y + 3z = -2 7 Answer Key Testname: MTH 112 PRACTICE TEST 3 SUMMER 2012 1) increasing (-2, -1) ∪ (3, ∞) decreasing, (1, 3) constant, (-1, 1) Note: Do not use brackets [ ]on these. 2) f(x+h) = 6(x + h) + 7= 6x + 6h + 7 f(x+h) - f(x) =6x+6h+7-(6x+7) = 6x+6h+7-6x-7 = 6h f(x+h)-f(x) 6h = = 6 h h 30) 3 31) 33 32) 0.49 33) 1.02 34) 0.69 35) 81.36 36) {10} 37) {7} 4 38) { } 9 3) 2x + h + 9 x - 4 4) f-1 (x) = 8 39) 3 40) {9, -1} 41) {63} 42) (x + 7)2 + (y + 4)2 = 144 7x + 5 5) f-1 (x) = 2 43) (x + 8)2 + y 2 = 4 44) (x + 3)2 + (y + 6)2 = 5 6) f-1 (x) = x3 - 8 3 7) f-1 (x) = x - 2 8) 1 + log x 3 9) 3 - log x 5 10) 5 - ln 9 11) 8logn x 45) (-7, -8), r = 7 46) 10 5 12) -2 log 13 2 1 13) log y 5 7 -10 -5 15) log 7 + log 11 - log 13 5 5 5 16) log (x + 2) - 5 log x 3 3 1 17) log x - 2 2 2 10 x -10 Domain = (-10, 10); Range = (-10, 10) 47) 10 1 1 3 18) log2 x + log2 y - 4 2 4 19) log9 5 -5 14) logb y + 4 logb z 5 y y 5 xy (x + 8)4 -10 (x - 2)9 20) ln x5 -5 5 10 x -5 21) loga 153 -10 22) ln(8) Domain = (2, 8), Range = (0, 6) 23) loga (x2/3 y1/9 ) 24) ln (x - 2) 25) 1.3631 26) 2.4750 27) -4.3219 28) {2} 29) {3} 8 Answer Key Testname: MTH 112 PRACTICE TEST 3 SUMMER 2012 48) 61) y 10 y 6 5 4 2 -10 -5 10 x 5 -6 -4 -2 2 4 6 x 10 x -2 -5 -4 -10 -6 49) $3300.00 50) 179 grams 51) 2,616,543 52) 1951 53) 2002 54) {(5, 1), (6, 0)} 55) {(-5, -6), (-6, -5)} 56) {(3, 0), (-3, 0)} 57) {(0, 5), (0, -5)} 58) {(5, 4), (3, 4)} 59) 62) y 10 5 -10 -5 5 -5 y 10 -10 8 6 63) 4 -2 5 9 52 3 9 8 97 8 6 8 88 2 -10 -8 -6 -4 -2 -2 2 4 6 8 10 x 64) -4 6 0 6 90 0 4 7 88 4 3 2 68 65) {(5, -5, -1)} 66) {(2, 2, 4)} 67) ∅ 68) Infinitely many solutions. -6 -8 -10 60) 12 y 10 8 6 4 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -6 -8 -10 -12 9