Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Module'4'Lesson'4:''Evaluating'Trig'Functions' ! Recall!your!knowledge!of!the!Unit!Circle,!specifically!with!radian!measures.! Note:!!These!specific! ordered!pairs!are! only!unique!to!the! Unit!Circle!–!a!circle! whose!radius!is!1.! You!might!be!wondering!where!sine,!cosine,!and!tangent!fall!into!place!here.!!! ! ! Evaluating'Sine'and'Cosine' Each!ordered!pair!(x,!y)!corresponds!to!the!sine!and!cosine!value!of!an!angle!θ.! ! !, ! = (cos ! , sin !)! Tip:!!Since!(x,!y)! ! appear!in! So!cos ! = !!and!sin ! = !.! alphabetical!order,! ! so!do!(cosθ,!sinθ)! 1" Example'1.!!Evaluate!cos !! ! !and!sin !! ! .!!! (These!are!read!as!“cosine!of!2pi!over!3”!and!“sine!of!2pi!over!3”.)! !! Find! ! ! !on!the!Unit!Circle.!!It!has!the!corresponding!ordered!pair! − , .!! ! ! ! 2! 1 cos =− ! 3 2 and! sin 2! 3 = ! 3 2 ! Example'2.''Evaluate!cos !! ! !and!sin !! ! .! (These!are!read!as!“cosine!of!7pi!over!4”!and!“sine!of!7pi!over!4.)! !! Find! ! !on!the!Unit!Circle.!!It!has!the!corresponding!ordered!pair! cos ! ! ,− ! ! 7! 2 = ! 4 2 and! sin 7! 2 =− ! 4 2 Evaluating'Tangent' !"# ! ! Recall!the!identity!that!tan ! = !"# !.!!Therefore,!tan ! = ! .! ' ! Example'3.''Evaluate!tan .! ! ! ! ! ! Find! !on!the!Unit!Circle.!!It!has!the!corresponding!ordered!pair! ! , .!!! ! ! ! ! 1 ! sin 6 1 tan = = 2 = ! ! 6 cos 3 3 6 2 ! We!should!rationalize…! 1 ! 3 ∙ 3 3 = 3 ! 3 So!we!have!that!tan 2" ! ! = ! ! .! .!!! ! ! Example'4.''Evalute!tan − ! .!!! ! Find!– !on!the!Unit!Circle.!!It!has!the!corresponding!ordered!pair!(0,!T1).!!! ! ! sin − 2 ! 1 tan − = = − = !"#$%&"$#! ! 2 0 cos − 2 ! Example'5.''Evalute!tan !! Find! !! ! .!!! !on!the!Unit!Circle.!!It!has!the!corresponding!ordered!pair! − ! 3! − 2 3! sin 4 tan = = 2 = −1! 3! 4 2 cos 4 2 ! ! ! ! ! , ! ! Positive'Trig'Values'by'Quadrant' " It!is!helpful!to!recognize!that!certain!trigonometric!values!are!positive!or!negative! depending!on!the!quadrant!in!which!the!terminal!side!of!the!angle!lies.!!! • • • 3" ! Since!cos ! = !,!!"#$%&!values!are!positive!in!Quadrants!I!and!IV.! Since!sin ! = !,!!"#!!values!are!positive!in!Quadrants!I!and!II.! ! Since!tan ! = ! ,!!"#$%#!!values!are!positive!where!either!both!x!and!y!are! positive!or!both!x!and!y!are!negative.!!This!occurs!in!Quadrants!I!and!III.! .!!! ! A!helpful!pneumonic!device!is!“A!Smart!Trig!Class”.! ! ! " 4" • • • • The!“A”!stands!for!“All!are!positive”.! The!“S”!stands!for!“Sine!is!positive”.! The!“T”!stands!for!“Tangent!is!positive”.! The!“C”!stands!for!“Cosine!is!positive”.! ' ! Evaluating'Secant,'Cosecant,'and'Cotangent' ! Recall!the!“reciprocal”!properties!of!secant,!cosecant,!and!cotangent!from!Module!4! Lesson!1.!!Consider!their!application!here!with!the!Unit!Circle.! ! …And'therefore'we'use'these' Reciprocal'Identities' properties'to'evaluate'trig' functions'using'the'Unit'Circle.' sec ! = 1 ! cos ! !"# ! = !!! (since!cos ! = !)! csc ! = 1 ! sin ! !"! ! = !!! ! ! (since!sin ! = !)! 1 cot ! = tan !!and!therefore! ! !"# ! = !!! cos ! ! !! Example'6.''Evaluate!sec ! .! ! Since!cos !! ! ! = !we!can!find!secant!by…! ! sec ! Example'7.!!Evaluate!csc − Since!sin − ! !! ! = ! ! !! ! 5! 1 = = 2! 1 3 2 .! !we!can!find!cosecant!by…! csc − 5! 1 2 = = ! 4 2 2 2 ! Always!rationalize!if!there!is!a!square!root!in!the!denominator.! 2 2 2 2 ∙ = = 2! 2 2 2 ! Therefore!csc − ' 5" ' ! (since!tan ! = ! )! cot ! = sin ! ! ! !! ! = 2.! Example'8.!!Evaluate!cot !.! ! ! ! ! ! Since!tan ! = ! = !!we!can!find!cotangent!by!finding!the!reciprocal!of!! .! ! ! 0 cot = = 0! 2 1 6"