Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
W2D1 Intro Graphs of Rational Expressions Warm Up 1. Evaluate x+1 x2 −6x+8 2. Evaluate x+3 x2 −2x−35 when x = -1 when x = -5 3. What value of x that will make each denominator equal to zero. 1 x 1 x−1 1 x−2 1 x+3 1 (x−3)(x+1) Lesson 4 Graph Rational Expressions Inquiry WS Graph Rat Do #1 with them to show the shape and highlight the asymptotes. Asymptote: where the function is undefined. The function nears the asymptote as it approaches infinity The general form of a rational equation y = a +k x−h h shifts the graph left and right. In this case the key to graphing is the vertical asymptote shifts left or right. k shifts the graph up or down. In this case the key to graphing is that the horizontal asymptote shifts up or down. a is the scale factor or causes a reflection. The rational function can take the form y = axn + bxn−1 ...k cxm + dxm−1 .....p In this case, solve the denominator to find the vertical asymptotes. Do long division (ignore the remainder) to find the equation of the horizontal asymptote. 1 EX 1: Make a table and graph y = x−2 +1 First draw the vertical asymptote. It is x = Whatever makes the denominator zero x=2 Then draw the horizontal asymptote. it is equal to k if the numerator is a constant. y=1 Then plug in two points on each side of the vertical asymptote x = 1 and x = 3 x y 1 0 3 2 0 1 2 4 3 2 Plot the points. Sketch the curves. 5 4 3 2 1 −2 −1 −1 1 2 3 4 5 6 7 8 −2 −3 −4 −5 Figure 1: Ex 1 x - intercept (1, 0) 1 y-intecept (0, ) 2 Domain All Real Numbers except x 6= 2 Range: All Real Numbers except y 6= 1 EX 2: (YOU TRY if needed) graph y= −4 x+3 −2 First draw the vertical asymptote. It is x = Whatever makes the denominator zero VA : x = -3 Then draw the horizontal asymptote. it is equal to k if a is a constant. HA : y = -2 Then plug in 2 points on each side of the vertical asymptote x - int (-5,0) y- int (0, -3.33) x y -5 0 -4 2 -2 -6 1 -3 Domain R x 6= −4 Range R y 6= −2 6 5 4 3 2 1 −8 −7 −6 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 1 2 3 4 5 Figure 2: Ex 2 EX 3: Graph y = x−3 x+4 VA: x = -4 HA: y = 1 x-intercept: (3, 0) 3 y-intercept: (0, - ) 4 Domain: R, x 6= -4 Range: R, y 6= 1 Horizontal Asymptote visualization Using Example 3 x f(x) 1000 1.006 1000000 1.000006 -1000 .994 -1000000 .999994 1 x+4 x−3 −x−4 −7 x y 3 0 -3 -6 -5 8 -6 9 2 10 9 8 7 6 5 4 3 2 1 −12 −11 −10−9−8−7−6−5−4−3−2−1 −1 −2 −3 −4 −5 −6 −7 1 2 3 4 5 Figure 3: Ex 3 EX 4: Graph 3x + 1 x−5 VA: x = 5 3 x−5 3x + 1 − 3x + 15 16 HA: y = 3 1 , 0) 3 1 y-intercept: (0, - ) 5 Domain: R, x 6= 5 Range: R, y 6= 3 x-intercept: ( - 3 x−5 3x + 1 − 3x + 15 16 x y 6 19 7 11 4 -13 3 -5 12 10 8 6 4 2 −14 −10 −6 −2 −2 2 6 10 14 18 −4 Figure 4: Ex4 3x+1 x−5 EX 5: Graph y= x2 2x2 − 1 − 4x − 12 To find what makes the denominator zero, factor to solve: y= 2x2 − 1 (x − 6)(x + 2) 2 2 x − 4x − 12 2 2x −1 − 2x2 + 8x + 24 8x + 23 VA: x=6, x= -2 HA : y= √2 2 x-int ( , 0) = (1.71, 0) 2 1 y-int (0, ) = (0, .083) 12 Domain: R, x 6= 6, x6= -2 Range: R, y 6= 2 Must plug in 6 points because there are 2 asymptotes now! x y -4 31 ≈ 1.5 20 -3 17 ≈2 9 -1 - 17 5 -7 7 97 9 8 127 20 ≈ 11 ≈6 11 10 9 8 7 6 5 4 3 2 1 −11−9 −7 −5 −3−1 −1 1 3 5 7 9 11 13 15 −2 −3 −4 −5 −6 −7 Figure 5: Ex 5 2x2 −1 x2 −4x−12 EX 6: graph y= 2x −9 x2 When you do long division x2 can’t go into 2x so the asymptote is y = 0 VA : x= 3, x= -3 HA : y=0 x-int (0, 0) y-int (0, 0) Domain: R, x 6= ±3 Range: R, y 6= 0 x y -5 - 5 ≈ −.5 8 -4 - 8 ≈ −1 7 -1 1 2 2 - 4 8 7 ≈1 5 5 8 ≈ .5 4 5 8 7 6 5 4 3 2 1 −6 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 −7 −8 1 2 3 4 5 6 Figure 6: Ex 6 2x x2 −9 EX 7: graph y= x2 x+3 + 5x + 6 When you do long division x2 can’t go into 2x so the asymptote is y = 0 VA : x= -2, x= -3 HA : y=0 x-int (-3, 0) 1 y-int (0, ) 2 Domain: R, x 6= −2x 6= −3 Range: R, y 6= 0 x y -5 - 1 3 -4 - 1 2 -2.5 -2 -1 1 1 1 3 6 5 4 3 2 1 −6 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 1 2 3 4 Figure 7: Ex 7 x+3 x2 + 5x + 6 1. Graph x+2 x2 −3x−10 2. Graph x+4 x−2 3. Graph −x+1 x+2 4. Graph x+3 2x+8 5. Graph 2x+1 x+3 + 4 6. Graph 4 x−2 5 8 4 6 3 2 4 1 2 −5−4−3−2−1 −1 1 2 3 4 5 6 7 8 9 10 −10 −8 −6 −4 −2 −2 −2 −3 2 4 6 8 10 6 8 −4 −4 −5 −6 Figure 8: 1. x+2 x2 −3x−10 2. x+4 x−2 8 6 6 4 4 2 2 −14−12−10 −8 −6 −4 −2 −14−12−10 −8 −6 −4 −2 2 4 6 8 −4 −4 −x+1 x+2 Domain: x 6= -2 4 −2 −2 Figure 9: 3. 2 Range: y 6= -1 4. x+3 2x+8 Domain: x 6= -4 Range: y 6= 1 2 14 5 12 4 3 10 2 8 1 6 −5 −4 −3 −2 −1 −1 4 2 3 4 5 −2 2 −14−12−10 −8 −6 −4 −2 −2 1 −3 2 4 Figure 10: 5. 6 −4 8 −5 2x+1 x+3 + 4 Domain: x 6= -3 Range: y 6= 6. 4 x−2 Exit Pass 2x − 3 1. Graph f(x) = x−4 List the Vertical Asymptote, Horizontal Asymptote, x-intercept, y-intercept 2. What are the Domain and Range 1. VA : x= 4 HA : y= 2 x-int (1.5, 0) y-int (0, .75) 2 . D x 6= 4 R: y 6= 2 7 6 5 4 3 2 1 −5−4−3−2−1 −1 1 2 3 4 5 6 7 8 9 10 −2 −3 Figure 11: Exit Pass