Download Graph Rational Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
W2D1 Intro Graphs of Rational Expressions
Warm Up
1. Evaluate
x+1
x2 −6x+8
2. Evaluate
x+3
x2 −2x−35
when x = -1
when x = -5
3. What value of x that will make each denominator equal to zero.
1
x
1
x−1
1
x−2
1
x+3
1
(x−3)(x+1)
Lesson 4 Graph Rational Expressions
Inquiry WS Graph Rat
Do #1 with them to show the shape and highlight the asymptotes.
Asymptote: where the function is undefined. The function nears the asymptote as it approaches infinity
The general form of a rational equation y =
a
+k
x−h
h shifts the graph left and right. In this case the key to graphing is the vertical asymptote shifts left or right.
k shifts the graph up or down. In this case the key to graphing is that the horizontal asymptote shifts up or down.
a is the scale factor or causes a reflection.
The rational function can take the form y =
axn + bxn−1 ...k
cxm + dxm−1 .....p
In this case, solve the denominator to find the vertical asymptotes.
Do long division (ignore the remainder) to find the equation of the horizontal asymptote.
1
EX 1:
Make a table and graph y = x−2
+1
First draw the vertical asymptote. It is x = Whatever makes the denominator zero
x=2
Then draw the horizontal asymptote. it is equal to k if the numerator is a constant.
y=1
Then plug in two points on each side of the vertical asymptote
x = 1 and x = 3
x
y
1
0
3
2
0
1
2
4
3
2
Plot the points. Sketch the curves.
5
4
3
2
1
−2 −1
−1
1
2
3
4
5
6
7
8
−2
−3
−4
−5
Figure 1: Ex 1
x - intercept (1, 0)
1
y-intecept (0, )
2
Domain All Real Numbers except x 6= 2
Range: All Real Numbers except y 6= 1
EX 2:
(YOU TRY if needed) graph y=
−4
x+3
−2
First draw the vertical asymptote. It is x = Whatever makes the denominator zero
VA : x = -3
Then draw the horizontal asymptote. it is equal to k if a is a constant.
HA : y = -2
Then plug in 2 points on each side of the vertical asymptote
x - int (-5,0)
y- int (0, -3.33)
x
y
-5
0
-4
2
-2
-6
1
-3
Domain R x 6= −4 Range R y 6= −2
6
5
4
3
2
1
−8 −7 −6 −5 −4 −3 −2 −1
−1
−2
−3
−4
−5
−6
−7
−8
−9
−10
1
2
3
4
5
Figure 2: Ex 2
EX 3:
Graph y =
x−3
x+4
VA: x = -4
HA: y = 1
x-intercept: (3, 0)
3
y-intercept: (0, - )
4
Domain: R, x 6= -4
Range: R, y 6= 1
Horizontal Asymptote visualization Using Example 3
x
f(x)
1000
1.006
1000000
1.000006
-1000
.994
-1000000
.999994
1
x+4
x−3
−x−4
−7
x
y
3
0
-3
-6
-5
8
-6
9
2
10
9
8
7
6
5
4
3
2
1
−12
−11
−10−9−8−7−6−5−4−3−2−1
−1
−2
−3
−4
−5
−6
−7
1 2 3 4 5
Figure 3: Ex 3
EX 4:
Graph
3x + 1
x−5
VA: x = 5
3
x−5
3x + 1
− 3x + 15
16
HA: y = 3
1
, 0)
3
1
y-intercept: (0, - )
5
Domain: R, x 6= 5
Range: R, y 6= 3
x-intercept: ( -
3
x−5
3x + 1
− 3x + 15
16
x
y
6
19
7
11
4
-13
3
-5
12
10
8
6
4
2
−14 −10 −6
−2
−2
2
6
10
14
18
−4
Figure 4: Ex4
3x+1
x−5
EX 5:
Graph y=
x2
2x2 − 1
− 4x − 12
To find what makes the denominator zero, factor to solve:
y=
2x2 − 1
(x − 6)(x + 2)
2
2
x − 4x − 12
2
2x
−1
− 2x2 + 8x + 24
8x + 23
VA: x=6, x= -2
HA : y=
√2
2
x-int (
, 0) = (1.71, 0)
2
1
y-int (0,
) = (0, .083)
12
Domain: R, x 6= 6, x6= -2
Range: R, y 6= 2
Must plug in 6 points because there are 2 asymptotes now!
x
y
-4
31
≈ 1.5
20
-3
17
≈2
9
-1
- 17
5
-7
7
97
9
8
127
20
≈ 11
≈6
11
10
9
8
7
6
5
4
3
2
1
−11−9 −7 −5 −3−1
−1 1 3 5 7 9 11 13 15
−2
−3
−4
−5
−6
−7
Figure 5: Ex 5
2x2 −1
x2 −4x−12
EX 6:
graph y=
2x
−9
x2
When you do long division x2 can’t go into 2x so the asymptote is y = 0
VA : x= 3, x= -3
HA : y=0
x-int (0, 0)
y-int (0, 0)
Domain: R, x 6= ±3
Range: R, y 6= 0
x
y
-5
-
5
≈ −.5
8
-4
-
8
≈ −1
7
-1
1
2
2
-
4
8
7
≈1
5
5
8
≈ .5
4
5
8
7
6
5
4
3
2
1
−6 −5 −4 −3 −2 −1
−1
−2
−3
−4
−5
−6
−7
−8
1
2
3
4
5
6
Figure 6: Ex 6
2x
x2 −9
EX 7:
graph y=
x2
x+3
+ 5x + 6
When you do long division x2 can’t go into 2x so the asymptote is y = 0
VA : x= -2, x= -3
HA : y=0
x-int (-3, 0)
1
y-int (0, )
2
Domain: R, x 6= −2x 6= −3
Range: R, y 6= 0
x
y
-5
-
1
3
-4
-
1
2
-2.5
-2
-1
1
1
1
3
6
5
4
3
2
1
−6 −5 −4 −3 −2 −1
−1
−2
−3
−4
−5
−6
1
2
3
4
Figure 7: Ex 7
x+3
x2 + 5x + 6
1. Graph
x+2
x2 −3x−10
2. Graph
x+4
x−2
3. Graph
−x+1
x+2
4. Graph
x+3
2x+8
5. Graph
2x+1
x+3
+ 4 6. Graph
4
x−2
5
8
4
6
3
2
4
1
2
−5−4−3−2−1
−1
1 2 3 4 5 6 7 8 9 10
−10 −8 −6 −4 −2
−2
−2
−3
2
4
6
8
10
6
8
−4
−4
−5
−6
Figure 8: 1.
x+2
x2 −3x−10
2.
x+4
x−2
8
6
6
4
4
2
2
−14−12−10 −8 −6 −4 −2
−14−12−10 −8 −6 −4 −2
2
4
6
8
−4
−4
−x+1
x+2
Domain: x 6= -2
4
−2
−2
Figure 9: 3.
2
Range: y 6= -1
4.
x+3
2x+8
Domain: x 6= -4
Range: y 6=
1
2
14
5
12
4
3
10
2
8
1
6
−5 −4 −3 −2 −1
−1
4
2
3
4
5
−2
2
−14−12−10 −8 −6 −4 −2
−2
1
−3
2
4
Figure 10: 5.
6
−4
8
−5
2x+1
x+3
+ 4 Domain: x 6= -3
Range: y 6= 6.
4
x−2
Exit Pass
2x − 3
1. Graph f(x) =
x−4
List the Vertical Asymptote, Horizontal Asymptote, x-intercept, y-intercept
2. What are the Domain and Range
1.
VA : x= 4
HA : y= 2
x-int (1.5, 0)
y-int (0, .75)
2 . D x 6= 4
R: y 6= 2
7
6
5
4
3
2
1
−5−4−3−2−1
−1
1 2 3 4 5 6 7 8 9 10
−2
−3
Figure 11: Exit Pass
Related documents