Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Haemodynamics in anaesthesia and intensive care MUDr. Michal Horáček Dept. of Anaesthesia/ICM University Hospital Motol Praha Program • circulation monitoring • shock • cannulations • circulatory support In part 1 • basic physiology • heart rhythm disturbances US Navy A central computer system monitors the heart rates of each patient in the Intensive Care Unit of USN Hospital Ship 2002 • Monitoring = adjuncts and devices • Clinical examination! Clinical examination! • heart rate, non-invasive blood pressure – flow: CO = HR x SV – perfusion pressure: MAP – CVP – systemic vascular rezistence • capillary blood flow: – colour, temperature, cap. refill • • • • cerebral blood flow = consciousness renal blood flow = diuresis oedemas? piloerection? How does blood pressure arise? • heart – stroke volume – heart rate – contractility • vessel wall – age – aterosclerosis – diabetes mellitus • blood – volume – viscosity Blood pressure and cardiac output Ohm´s law: I (A) = U (V) /R (Ω) Blood pressure and cardiac output CO = (MPAP – LAP) / PVR Blood pressure is not the same everywhere! Remember, where you measure! Non-invasive blood pressure measurement • • • • • • mercury sphygmomanometr aneroid manometer (mechanical spring) hybrid (electronic transducer instead of Hg ) oscilometry aplanation tonometry photopletysmography Invasive blood pressure measurement • hydraulic part – – – – cannula or catheter connecting tubes taps mechano-electrical transducer • elektronic part – pressure module/amplifier – monitor Blood pressure is not only a number! non-invasive method invasive method Pulsology Stroke curve anacrotic notch volume component dicrotic notch inotropic component Changes of blood pressure and stroke curve towards periphery: • SBP higher • DBP lower High pulse pressure • Increased stroke volume – hyperdynamic circulation • anemia, AR, thyreotoxicosis, AV shunts, sepsis etc. • Augmentation by reflected waves – increased stiffness of central arteries What can stroke wave tell us? Functional haemodynamic monitoring • pressure changes during ventilation • reaction to volume challenge • reaction to passive leg raising Central venous pressure measurement • curve description: – – – – – a = atrial contraction c = tricuspid valve bulging x = atrial relaxation, RV opening v = atrial filling, tricusp. v. opening y = RV filling • normal values: 0-9 mm Hg = 0-12 cm H2O • volume challenge ac x v y Pulmonary (SG) catheter Jeremy Swan 1922 - 2005 • • • • distal lumen proximal lumen cuff lumen termistor Vilém Ganz 1919-2009 SG insertion Position check What does SG catheter tell us? • measurement • calculated parameters – pressures: • • • • RAP RVP PAP PAWP – cardiac output • calculations • samples – – – – – SVR/SVRI = (MAP-RAP)/CO, resp. CI PVR/PVRI = (MPAP-PAWP)/CO, r. CI stroke volume/index (SV/SI) = CO/HR cardiac index (CI) = CO/BSA left ventricle stroke work (LVSWI) = (MAP – PAWP) . SV – right ventricle stroke work (RVSWI) = (MPAP – RAP) . SV SG indications Prof. Marco Ranucci hemodynamically unstable patients: • disturbed systolic function of left ventricle • disturbed systolic function of right ventricle • disturbed diastolic function of left ventricle • Ventricular septum defect in AMI • Mechanical support of left ventricle Ranucci M. : Which cardiac surgical patients can benefit from placement of a pulmonary artery catheter? Crit´Care 2006;10 Suppl 3:S6. Cardiac output measurement • Fick´s method: Q = (VO2/(CA – CV))*100, NICO • Finapres: Jan Peňáz 1967 • dilution method: Stewartova-Hamiltonova rce – thermodilution – dye dilution – lithium dilution • • • • echocardiography sonography – oesophageal doppler bioimpendance stroke curve analysis: SV = 2 ml . pulse pressure Cardiac output measurement • thermodilution: – intermitentní: classical pulmonary catheter – continuous: • Vigilance II Edwards Lifesciences • Q2plus Hospira – transpulmonal: PiCCO Pulsion Med. S. • lithium dilution: LiDCO • pulse wave analysis: – calibrated: PiCCO, LiDCO – self-calibrated: Flo/Trac Vigileo – non-calibrated: Pressure Recording Analytical Method – MostCare, Vytech N Engl. J Med. 2001 Nov 8;345(19):1368-77. • objem • liberální x konzervativní přístup (objem i DO2) • dle potřeby DO2 VO2 -15% Echocardiography: complete x focused examination BEAT = Beat Index, Effusion,J Trauma. Area, 2008;65:509 Tank –516 E B PLAX PSAX A4C SC A A T Program • circulation monitoring • shock • cannulation • circulatory support In part 1 • basic physiology • heart rhythm disturbances Shock = acute generalised decrease of flow through metabolically active part of blood circulation Shock = global tissue hypoxia due to imbalance between systemic DO2 / VO2 Van Beest et al.: Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle Critical Care 2011, 15:232 Shock - pathophysiological classification dr. Max Harry Weill 1927-2011 • hypovolemic • cardiogennic – obstructive • distributive (vasogennic) – anaphylactic – septic – neurogennic Weil MH, Shubin H.: Proposed reclassification of shock states with special reference to distributive defects Adv Exp Med Biol. 1971 Shock – time course compensated shock: normal haemodynamics, but redistribution and centralisation of blood → microcirculatory disturbance (constriction of precapillary sphincters, fluid mobilisation) → insufficient tissue oxygenation decomp. shock completed resuscitation: static pressure parameters: TK, CVP, PAWP – irreversible microcirculatory statické volume parameters: EDV, GEDV dynamic parameters: SPV, PPV, SVV failure metabolic parameters: SVO , lactate, BE 2 Shock organs • shock myocardium • shock lung: V/Q disturbance → surfactant disturbance → instability of alveoli • shock kidney: hypoperfusion → intrarenal flow redistribution → diminished osmotic gradient → vessels trombosins + tubular obstruction • ischemia/reperfusion, apoptosis, MODS, death Haemodynamic profiles • PCWP, CO, SVR: low, normal, high 27 combinations • hypovolemic: ↓ PCWP, ↓ CO, ↑ SVR • cardiogennic: ↑ PCWP, ↓ CO, ↑ SVR • vasogennic: ↓ PCWP, ↑ CO, ↓ SVR Hemodynamic differentiation 1. Ascertain haemodynamic profile e.g.: ↓ PCWP, ↓ CO, normal SVR 2. Ascertain problem e.g.: hypovolemia, vasodilatation 3. Choose treatment replenish volume and/or heart and SVR support 4. Underlying cause? Hypovolemic shock ↓ PCWP, ↓ CO, ↑ SVR • cause: trauma, surgery, burns, diarrhea, vomiting, polyuria, sweating • treatment: – replenish volume according to need – temporarily vazopressors to maintain perfusion pressures • evaluation: – macrocirculation: HR, BP, peripheral temperature, diuresis – microcirculation: capillary refill, capillaroscopy – biochemistry: ph, BE, lactate, SvO2 Life threatening bleeding (LTB) • • • • • • blood volume 70 ml/kg adult, 85 ml/kg newborn > 50 % blood volume > 150 ml/min > 1,5 ml/kg/min > 20 minutes critical bleeding = LTB with massive transfusion massive transfusion – ½ blood volume during 4 hod (5 EM) – > 1 blood volume in 24 hours Trauma induced coagulopathy • in 25% of patients • acidosis + hypothermia • endothelium – thrombomodulin release → thrombin sequestration → APC production→ f. V a VIII inactivation = anticoagulation – tPA release → fibrinolysis • volume replenishment → dilution of platelets and coagulation factors Treatment • balanced resuscitation – limited volume administered for maintaining organ perfusion without disturbing haemostatické plug and worsening bleeding • damage control resuscitation – – – – – – lower than normal BP (permissive hypotension 80-100 mm Hg) minimal volume resuscitation till bleeding stops haemostatic transfusion of ERY, FFP, thrombo (1:1:<5) coagulation factors (fibrinogen, kryoprecipitate, rfVIIa) tranexamic acid (1 g i.v. in 10 min + 1 g i.v. during 8 hours) surgery to stop bleeding and remove microbial contamination Resuscitation targets in trauma patients • • • • • • • • BP 80 mm Hg, MAP 50-60 mm Hg HR < 120/min SaO2 > 96 % (and pulse oxymeter functioning) diuresis > 0,5 ml/kg/hod consciousnesss follows commands lactate < 1,6 mmol/l BE > -5 mmol/l Hb > 90 g/l Nolan J.: Fluid resuscitation for the trauma patient. Resusc 2001;48:57-69 McCunn M, Dutton R. End-points of resuscitation: how much is enough? Curr Opin Anaesthesiol 2000;13:147–53. Cardiogennic shock ↑ PCWP, ↓ CO, ↑ SVR • cause: function of hte heart as a pump decreases – myogennic: infarction, cardiomyopathy, myocarditis, toxins – mechanical: valve diseases, obstruction – rythmogennic: tachy- / bradycardias • most frequent: AMI (STEMI i non-STEMI), 5-10 % pt. • ischemia → diastolic + systolic dysfunction → CO and blood pressure decrease → DO2 decreases → → MODS → death Cardiogennic shock treatment • circulatory stabilisation: – pharmacologic support: • dobutamine, nitroglycerine, noradrenaline, levosimendan – IABC, ECMO • treatment of the cause: – opening infarction artery = PCI Acute coronary syndrome • algic: unstable AP, non-STEMI, STEMI • arrhythmic: sudden death, complex ventricular dysrrhythmias • congestive: diffuse coronary hypoperfusion leading to heart failure • combined Unstable angina pectoris • first presentation • worsening pain: – – – – more frequent more intense lasting longer worsening reaction to nitrates • rest pain Obstructive shock – pulmonary embolism • • • • presentation: dyspnea + cough + haemoptysis exams: D-dimers + echo + CT heparine 5-10 000 u. i.v. + 1000 u./h - aPTT thrombolysis: unstable patients, shock, right heart failure • thrombembolectomy Obstructive shock - tamponade • presentation: – low BP – high CVP – still heart sounds • diff. dg. – hypovolemia • treatment: – pericardial puncture, surgery Anaphylactic shock ↓ PCWP, ↑ CO, ↓ SVR • severe, rapidly developing, life threatening generalised allergy • cause: – immunologic = reaction of Ag with antibody IgE • degranulation of mastocytes a bazophiles → release: • 1. histamine, proteases (tryptase, chymase) a heparine • 2. NO (his), proinflammatory lipomediators (LT, TXA2, PAF) • 3. additional chemo- and cytokines • generalized inflammation – non-immunologic (anaphylactoid) = non-IgE histamine relase, mastocytosis Anaphylactic shock ↓ PCWP, ↑ CO, ↓ SVR allergy severity: 1. muco-cutaneous signs 2. muco-cutaneous signs + systemic signs (hypotension, tachycardia, dyspnoa, GIT) 3. CV collaps ± muco-cutaneous signs (tachy-/bradycardia, arrhythmias, hypotension, bronchospasm, GIT) 4. circulatory arrest Ring J, Messmer K: Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1977; 1:466–9 Anaphylaktic shock ↓ PCWP, ↑ CO, ↓ SVR 1. 2. 3. stop further antigen load and to stop anesthetics maintain patent airways, 100% O2 restore circulation: – adrenaline according to needs (II. deg. 10-20 ug, III. deg.: 100-200 ug + inf 1-4 ug/min , IV. deg. CPR + 1-3 mg in 3 min + 3-5 mg in 3 min + inf. 4-10 ug/min) – replenish volume using infusion (50% vol. given escapes) – beta-2-mimetics 4. additional therapy: – corticoids, antihistamines Septic shock - definiton • infection • SIRS (systemic inflammatory response sy, ≥ 2 criteria) Roger C. Bone 1941-1997 – temperature + tachycardia + tachypnoe + leukocytosis • sepsis = infektion + SIRS • severe sepsis = sepsis + organ dysfunction – hypotension + change of consciousness + oliguria/creatinine + laktate ≥ 2 + Sa ≤ 90 % + hyperbili + thrombopenia – diagnosis in max. 2 hours! • septic shock = severe sepsis + hypotension despite adequate volume resuscitation Septic shock – treatment Surviving Sepsis Campaign Resuscitation bundle: 7 actions during 6 hours •haemoculture •lactate? •ATB within 1 hours •fluids = crystalloids ≥ 30 ml/kg for hypotension •vazopressors: MAP ≥ 65 •CVP ≥ 8 mm Hg •ScvO2 ≥ 70 % • control of the infection source (surgery/drainage) Treatment bundle: 4 actions within 24 hours • steroids in low dose? • recomb. activ. protein C (Xigris) • glycemia < 8,3 mmol/l • protective ventilation Mortality • hypovolemic: the lowest • cardiogennic: 50-60 % Herz 2011; 36:73–83 • sepsis: – severe sepse 30-50 % – septic shock : 70 % – leading cause of death in non-coronary ICU Program • circulation monitoring • shock • cannulations • circulatory support In part 1 • basic physiology • heart rhythm disturbances sir Christopher Wren 1632-1723 Robert Aubaniac Sven-Ivar Seldinger Une nouvelle voie d’injection 1921-1998 ou de ponction veineuse: 1953 la voie sous-claviculaire. Sem Hop Paris 1952; 28: 3445–3447 Venous access pH • dobutamine • vancomycine • naloxone • SCHJ, cerucal • frusemide • thiopentone • metohexital • propofol 2,5-5,0 3,2 3,4 3,5 9,0 10,5 11,5 6-8,5 osmolalita (mosmol/l) • F 1/1 • 5% glucoes • 4% aminoacids • 10% manitol • 10% glucose • 20% glucose • 10% lipids 290 290 460 550 600 1250 280 Indications • • • • • • immediate drug administration drugs infusion therapy – hydration, ion disturbances t. parenteral nutrition transfusion therapy diagnostics (measurement of pressures, blood drawing) • treatment (extra-corporeal elimination, pacing etc.) Sites of access • peripheral veins incl. external jugular vein • central veins – subclavian vein – internal jugular vein – peripherally inserted central catheters PICC) • intracardiac? • intraosseal! Indications of venous access central vv. • high volume + • highly effective drugs + • irritating drugs + peripheral vv. + ? - (osmo, pH) • • • • long-term treatment elimination methods Swan-Ganz Pacing + + + + - Cannulation • • • • • • metal needle jehla plastic cannula on the needle Catheter through the needle Seldinger´s method Desillet-Hoffman´s method implantable ports Hagen-Poiseuille´s law l Q = flow, R = radius, µ = viscosity, dp/dx = pressure change along the tube, l - length Gauge, French a Charriere • G = gauge = jauge (fr.) = měřidlo, míra Stubs Iron Wire Gauge = Birmingham Wire Gauge Gauge 1 = 0,3 inch (1 inch = 2.54 cm) diameter (inch) = 0,3 x 0,897(gauge number – 1) 16 G = 1/16 inch x 2.54 (cm) = 1.58 mm • French catheter scale Joseph-Frédéric-Benoît Charrière scale for sizes of urological catheters 1 F = 1 Charriere = 0.333 mm • surgical sutures: American Wire Gauge (1803–1876) Comparison of cannulas cannula 12 G 14 G 16 G 18 G 20 G 22 G 24 G size (mm) flow (ml/min) 2,1 * 45 1,7 * 45 1,3 * 45 1,1 * 40 330 215 97 55 36 18 Hagenův-Poiseuille´s law in practice Size • 24 G • 22 G • 20 G ml/min 18 36 55 • 18 G • 16 G • 14 G 105 215 330 Central access X 1 – subclavian v. infraclav. 1 - central catheters from 2 –subclavian v. supraclav. periphery 3 – int. jugular v. posterior appr. 2 – „half-way“ catheters 4 – int. jugular v. central appr. Subclavian vein infraclavicular approach Subclavian v. Subclavian vein supraclavicular approach XX X X Seldinger´s m. Sterile insertion Catheter insertion 18 F = 6 mm 7 F = 2,3 mm Invasive measurement of blood pressure indications: • fast changes of blood pressure e.g. sepsis, bleeding, feochromocytoma • vasoactive drugs • large surgeries • diagnostics, repeated blood samples Sites for cannulation? • superficially located • collateral flow • easy access (puncture, care) • minimal interference • • • • • • • • a. radialis a. femoralis a. axillaris a. cubitalis a. brachialis a. ulnaris a. dorsalis pedis a. temporalis spfc Sites and cannulation methods • Upper extremities – a. radialis, ulnaris, brachialis, axillaris • Lower extremities – a. femoralis, tibialis post., dorsalis pedis • direct puncture • transfixion • Seldinger´s technique Arterial canulation procedure • direct puncture • transfixion Program • circulation monitoring • shock • cannulation • circulatory support In part 1 • basic physiology • heart rhythm disturbances Circulatory support to optimalize DO2 Oxygen delivery Heart rate Optimal heart rate sinus rhythm 60-90/min • distinguish: unstable x symptomatic • treat underlying cause! • slow down in tachycardias – exclude compensatory tachycardia – relieve other causes, e.g. pain, dyspnea, fever – vagus, adenosine, betablockers, amiodarone, isoptin, cardioversion • speed up in bradycardias – atropine – beta-adrenergic drugs (dopamine, dobutamine, isoprenaline) – cardiac pacing (transcutaneous, oesophageal, i.v., epicardial) • secure synergy of contraction – heart failure with QRS > 130 ms Tachycardia Algorithm. Neumar R W et al. Circulation 2010;122:S729-S767 Copyright © American Heart Association Neumar R W et al. Circulation 2010;122:S729-S767 Copyright © American Heart Association Contractility Contractility • myocardial function independent of preload and afterload • dP/dT echo – systolic wall thickening – RWMA • hypo-, a-, dyskinesis • factors: – lenght of sarcomere – Ca availibility Calcium role in myocardial contraction Inotropics • usual effect: ↑ iCa2+ – – – – β receptors → adenylatecyklase →↑cAMP →↑iCa2+ PDE III inhibitors →↑cAMP →↑iCa2+ α receptors → PLC → DAG → PKC → iCa2 Digoxine, istaroxime block Na/KATPase →↑Na/CaATPase →↑iCa2+ • elevation of iCa2+ – ↑ demand for energy – risk of heart rhythm disturbances ↑ – increase of mortality Positive inotropic drugs adrenergic non-adrenergic • katecholamines • • • • • • • • • – – – – – adrenaline dopamine dobutamine dopexamine isoprenaline • non-katecholamines – ephedrine – fenylefrine – metoxamine phosphodiesterase inhibitors Bay K 8644 Ca digoxine forskoline glucagon levosimendan naloxon xantins Beta receptors phosphodiesterase AMP alfa-1 receptors Levosimendan • levo-simendan • mechanism of effect – ↑ afinity of troponin C to Ca – inhibits PDE III – opens KATP channels • Clinical effect – ↑ contractility – vasodilatation (systémic, pulmonary, coronary) – antiischaemic and antistunning effects Vasopressin • vasopressin = antidiuretic hormone – diabetes insipidus – sy of inadequate secretion – circulation: vasoconstriction • terlipressin Circulatory support, when drugs are not sufficient • intra-aortic balloon counterpulsation • resynchronisation therapy • extracorporeal membrane oxygenation Afterload Afterload • force acting against myocardial fiber shortening during systole = wall stess – vessel diameter – vessel stiffness – blood viskosity • T = Pr/2h, TK, SVR or PVR If afterload increases? • stroke volume can be maintained by incrreasing preload, till its reserve is not exhausted Heart failure • 1. phase – preload increases (PCWP) – „preload sensitive“ • 2. phase – SV decreases, HR goes up • 3. phase – CO, SV go down, preload and afterload increase – „afterload sensitive“ „Intensivist (and anaesthesiologist) will always need physiological knowledge and with improving monitoring possibilities the requirements on this knowledge will be steadily increasing.“ prof. Jukka Takala, MD, PhD in foreword to Invasive Haemodynamic Monitoring Publisher Becton Dickinson UK Ltd, Oxford, UK, 2001