Download Electric Charges

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 25
Electricity and Magnetism
Electric Fields: Coulomb’s Law
Reading: Chapter 25
1
Electric Charges: Conductors and Isolators
 Electrical conductors are materials in which
some of the electrons are free electrons
 These electrons can move relatively freely
through the material
 Examples of good conductors include copper,
aluminum and silver
 Electrical insulators are materials in which all
of the electrons are bound to atoms
 These electrons can not move relatively freely
through the material
 Examples of good insulators include glass, rubber
and wood
 Semiconductors are somewhere between
insulators and conductors
2
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
Electric Charges
 There are two kinds of electric charges
- Called positive and negative
 Negative charges are the type possessed by
electrons
 Positive charges are the type possessed by protons
 Charges of the same sign repel one another and
charges with opposite signs attract one another
Electric charge is always conserved in isolated system
Neutral – equal number of positive
and negative charges
Positively charged
15
Electric Charges: Conductors and Isolators
 Electrical conductors are materials in which
some of the electrons are free electrons
 These electrons can move relatively freely
through the material
 Examples of good conductors include copper,
aluminum and silver
 Electrical insulators are materials in which all
of the electrons are bound to atoms
 These electrons can not move relatively freely
through the material
 Examples of good insulators include glass, rubber
and wood
 Semiconductors are somewhere between
insulators and conductors
16
Conservation of Charge
Electric charge is always conserved in isolated system
Two identical sphere
q1  1μC
q2  2 μC
They are connected by conducting wire. What is the electric
charge of each sphere?
The same charge q. Then the
conservation of charge means that :
2q  q1  q2
For three spheres:
q1  1μC q2  2 μC
q
q1  q2 1  2

μC  0.5 μC
2
2
q3  3 μC
3q  q1  q2  q3
q
q1  q2  q3 1  2  3

μC  1μC
3
3
17
Coulomb’s Law
• Mathematically, the force between two electric charges:
q1q2 ˆ
F12  ke 2 r
r
• The SI unit of charge is the coulomb (C)
• ke is called the Coulomb constant
– ke = 8.9875 x 109 N.m2/C2 = 1/(4πeo)
– eo is the permittivity of free space
– eo = 8.8542 x 10-12 C2 / N.m2
Electric charge:

electron
e = -1.6 x 10-19 C

proton
e = 1.6 x 10-19 C
18
Coulomb’s Law
| q1 || q2 |
F12  F21  ke
r2
Direction depends on the sign of
the product
q1q2
F21  F12
opposite directions,
the same magnitude
1
2


F21
F12
q1q2  0
1
2


F21
F12
q1q2  0
1

F21
F12
2

q1q2  0
The force is attractive if the charges are of opposite sign
The force is repulsive if the charges are of like sign
Magnitude:
F12  F21  ke
| q1 || q2 |
r2
19
Coulomb’s Law: Superposition Principle
• The force exerted by q1 on q3 is F13
• The force exerted by q2 on q3 is F23
• The resultant force exerted on q3 is the vector
sum of F13 and F23
20
Coulomb’s Law
F21  ke
q1q2 ˆ
r21
2
r

1
q1  1μC q2  2 μC
q3  3 μC
Magnitude:
5m

2
6m
Resultant force:

F23 3
F13
F3  F21  F31
F13
F3
F23
6
| q3 || q2 |
 3  106
9 2  10
4
F23  ke

8.9875

10
N

15

10
N
2
2
r
6
6
| q3 || q1 |
 3  106
9 10
4
F13  ke

8.9875

10
N

2.2

10
N
2
2
r
11
F3  F23  F13  (15  104  2.2  104 )N  12.8  104 N
21
Coulomb’s Law
F21  ke
q1q2 ˆ
r21
2
r

1
q1  1μC q2  2 μC
5m
6m

F12 2
F32

Resultant force:
F2  F12  F32
3
F2
q3  3 μC
Magnitude:
F12
F32
6
| q3 || q2 |
 3  106
9 2  10
4
F32  ke

8.9875

10
N

15

10
N
2
2
r
6
6
| q1 || q2 |
 2  106
9 10
4
F12  ke

8.9875

10
N

7.2

10
N
2
2
r
5
F2  F32  F12  (15  104  7.2  104 )N  7.8  104 N
22
Coulomb’s Law
F21  ke
q1q2 ˆ
r21
2
r

F31 1
q1  1μC q2  2 μC
5m
F21

2
6m

Resultant force:
F1  F21  F31
3
F1
q3  3 μC
Magnitude:
F31
F21
6
| q3 || q1 |
 3  106
9 10
4
F31  ke

8.9875

10
N

2.2

10
N
2
2
r
11
6
| q1 || q2 |
 2  106
9 10
4
F21  ke

8.9875

10
N

7.2

10
N
2
2
r
5
F1  F21  F31  (7.2  104  2.2  104 )N  5  104 N
23
Coulomb’s Law
F21  ke
q1q2 ˆ
r21
2
r
1
5m
q1  1μC q2  2 μC
F21
F1  F21  F31
6m
F31


q3  3 μC
Resultant force:
F31

7m
3
F21
F1
2
Magnitude:
6
6
| q1 || q2 |
10

2

10
9
4
F21  ke

8.9875

10
N

5

10
N
2
2
r
6
6
6
| q3 || q1 |
10

3

10
9
3
F31  ke

8.9875

10
N

1.1

10
N
2
2
r
5

5m
F13
1
F23
7m
F3

F23
6m


3
F13
2
5m
1
F32
6m
F12


3
F1
F12
7m
F32
2
24
Chapter 25
Electric Field
25
Electric Field
 An electric field is said to exist in the region of space around a
charged object
 This charged object is the source charge
 When another charged object, the test charge, enters this electric
field, an electric force acts on it.
The electric field is defined as the electric force on the test charge
per unit charge
F
E
q0
 If you know the electric field you can find the force
F  qE
If q is positive, F and E are in the same direction
If q is negative, F and E are in opposite directions
26
Electric Field
 The direction of E is that of the force on a positive test charge
 The SI units of E are N/C
E
Coulomb’s Law:
F
q0
qq0 ˆ
F  ke 2 r
r
Then
F
q ˆ
E
 ke 2 r
q0
r
27
Electric Field
 q is positive, F is directed away
from q
 The direction of E is also away
from the positive source charge
 q is negative, F is directed toward q
 E is also toward the negative
source charge
qq0 ˆ
F  ke 2 r
r
F
q ˆ
E
 ke 2 r
q0
r
28
Electric Field: Superposition Principle
• At any point P, the total electric field due to a group of
source charges equals the vector sum of electric
fields of all the charges
qi ˆ
E  ke  2 ri
i ri
29
Electric Field
q ˆ
E  ke 2 r
r

1
q1  1μC q2  2 μC
Magnitude:
5m

2
6m
Electric Field:
E2
E1
E  E1  E2
E1
E
E2
6
| q2 |
9 2  10
2
E2  ke 2  8.9875  10
N
/
C

5

10
N /C
2
r
6
6
| q1 |
9 10
2
E1  ke 2  8.9875  10
N
/
C

0.7

10
N /C
2
r
11
E  E2  E1  (5  102  0.7  102 )N / C  4.3  102 N / C
30
Electric Field
q ˆ
E  ke 2 r
r
Electric field
E1
5m
q1  1μC q2  2 μC
E2
E  E1  E2
6m
E1
E2


1
7m
2
E
Magnitude:
6
| q2 |
9 2  10
2
E2  ke 2  8.9875  10
N
/
C

5

10
N /C
2
r
6
6
| q1 |
9 10
2
E1  ke 2  8.9875  10
N
/
C

0.37

10
N /C
2
r
5
31
Electric Field
q ˆ
E  ke 2 r
r
z
q1  10 μC q2  10 μC
E
5m
Direction of electric field?

5m


1
6m
2
32
Electric Field
q ˆ
E  ke 2 r
r
E

q1  10 μC q2  10 μC
E2
5m
E2 Electric field
E  E1  E2
E1

5m


1
6m
2
Magnitude:
6
| q2 |
10

10
3
E2  E1  ke 2  8.9875  109
N
/
C

3.6

10
N /C
2
r
5
E  2E1 cos φ
52  32 4
cos φ 

5
5
E
8
E1
5
33
Example
l  1m
q1  10 μC q2  10 μC
m1  m2  m
1  2
l  1m
T
1
2


FE
Electric field
r
mg
T  mg  FE  0
g
q1q2 ˆ
FE  ke 2 r
r
T cos  2  mg
T sin  2  FE
tan 1 
FE
q1q2
tan  2 
 ke 2
mg
r mg
 2  1
FE
qq
 ke 21 2
mg
r mg
34
Coulomb’s Law:
q1q2 ˆ
F12  ke 2 r
r
1
5m
F21
q ˆ
E  ke 2 r
r
E  ke 
i
qi ˆ
r
2 i
ri
F  qE
F1  F21  F31
6m
F31


3
Resultant force:
F31

7m
2
F1
E1
E  E1  E2
E1
E2
F21
5m
E2
6m


1
7m
2
E
35
Related documents