Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometric Integrals It is often necessary to evaluate integrals of the form (sin x)m (cos x)n dx, where m and n are integers. If one of the exponents, either m or n is and odd, there is a straightforward simplification. Case 1: m = 2M + 1 is odd. Then (sin x)m = (sin x)2M+1 = (sin2 x)M sin x = (1 − cos2 x)M sin x, so our integral becomes (sin x)m (cos x)n dx = (1 − cos2 x)M sin x(cos x)n dx and we may make the substitution u = cos x with du = − sin xdx to get 1 (sin x)m (cos x)n dx = (1 − cos2 x)M sin x(cos x)n dx = − (1 − u2 )M un du Example: − (sin x)11 (cos x)10 dx = − (1 − u2 )5 u10 du = 2 2 2 2 3 2 4 2 5 1 − 5u + 10(u ) − 10(u ) + 5(u ) − (u ) − − u10 du = u10 − 5u12 + 10u14 − 10u16 + 5u18 − u20 du = 11 13 15 17 19 21 u u u u u u −5 + 10 − 10 +5 − 11 13 15 17 19 21 +C = cos11 x 5 cos13 x 2 cos15 x 10 cos17 x 5 cos 19x cos21 x + − + − + +C − 11 13 5 17 19 21 2 Example: − (sin x)11 (cos x)−10 dx = − (1 − u2 )5 u−10 du = 2 2 2 2 3 2 4 2 5 1 − 5u + 10(u ) − 10(u ) + 5(u ) − (u ) − u−10 du = u−10 − 5u−8 + 10u−6 − 10u−4 + 5u−2 − u0 du = − −9 −7 −5 −3 −1 u u u u u −5 + 10 − 10 +5 −u +C = −9 −7 −5 −3 −1 − − C= −9 7 −3 10 cos cos x 5 cos x + − 2 cos−5 x + 9 7 3 x − 5 cos−1 x − cos x + 5 10 1 sec9 x − sec7 x + 2sec5 x − sec3 x + 5secx + cos x + C 9 7 3 3 Example: (sin x)−11(cos x)−10dx = (sin x)−12(cos x)−10 sin xdx = − (1 − u2 )−6 u−10 du can be done, but requires the method of Partial Fractions, which we shall see later. The situation is similar when the power of cos x is odd. Example: (sin x)10 (cos x)11 dx = (sin x)10 (cos x)10 cos xdx = (sin x)10 (cos2 x)5 cos xdx = (sin x)10 (1 − sin2 x)5 cos xdx = ( letting u = sin x and du = cos xdx) 10 2 5 u (1−u ) du = 10 u 2 2 2 2 3 2 4 2 5 1 − 5u + 10(u ) − 10(u ) + 5(u ) − (u ) u10 − 5u12 + 10u14 − 10u16 + 5u18 − u20 du = 4 u11 u13 u15 u17 u19 u21 −5 + 10 − 10 +5 − +C = 11 13 15 17 19 21 5 2 10 5 1 1 sin11 x − sin13 x + sin15 x − sin17 x + sin19 − sin21 x + C 11 13 5 17 19 21 5 When both powers are odd, it is easiest to select the function with the highest power for substitution: Good Example: (sin x)11 (cos x)3 dx = (sin x)11 (cos x)2 cos xdx = (sin x)11 (1 − sin2 x) cos xdx = ( letting u = sin x and du = cos xdx) 11 2 u (1 − u )du = u 11 u11 u14 − u du = − +C = 11 14 13 1 1 sin11 x − sin13 x + C 11 14 6 Bad Example: (sin x)11 (cos x)3 dx = (sin x)10 (cos x)3 sin xdx = (1 − cos2 x)5 (cos x)3 sin xdx = ( letting u = cos x and du = − sin xdx) (1 − u2 )5 u3 (−du) = 2 2 2 2 3 2 4 2 5 −1 + 5u − 10(u ) + 10(u ) − 5(u ) + (u ) u3 du = 3 5 7 9 −u + 5u − 10u + 10u − 5u 11 +u 13 du = u6 u8 u10 u12 u14 u4 +5 − 10 + 10 −5 + +C = − 4 6 8 10 12 14 5 5 5 1 1 cos12 x + cos14 x + C − cos4 x + cos6 x − cos8 x + cos10 x − 4 6 4 12 14 7 When neither power is odd, we need to use a double angle formula from trigonometry: cos 2x ≡ 2 cos2 x − 1 = 1 − 2 sin2 x can be solved for cos2 x and sin2 x: 1 + cos 2x 1 − cos 2x cos2 x = and sin2 x = 2 2 Thus, if we want to integrate (sin x)m (cos x)n dx, where m and n are even integers, we write m = 2M and n = 2N and we have: (sin x)m (cos x)n dx = (sin x)2M (cos x)2N dx = (sin2 x) (cos2 x)N dx 1 − cos 2x M 1 + cos 2x N dx = 2 2 M N −(M+N) 2 (1 − cos 2x) (1 + cos 2x) dx 8 M 1 + cos 2x dx = 2 1 1 1 1 + cos 2xdx = x + sin 2x + C = 2 2 2 Example: cos2 xdx = x 1 x + sin x cos x x 1 + sin 2x + C = + 2 sin x cos x + C = +C 2 4 2 4 2 1 − cos 2x dx = 2 1 1 1 1 − cos 2xdx = x − sin 2x + C = 2 2 2 Example: 2 sin xdx = x 1 x − sin x cos x x 1 − sin 2x + C = − 2 sin x cos x + C = +C 2 4 2 4 2 It should come as no surprise that 9 2 2 cos x + sin x dx = x + C Example: sin2 x cos2 xdx = 1 − cos 2x 2 1 + cos 2x dx = 2 1 1 + cos 4x 1 1 1 − cos2 2xdx = 1− dx = 1 − cos 4xdx = 4 4 2 8 1 1 x sin 4x x − sin 4x + C = − +C 8 4 8 32 10 Products of powers of secant and tangent functions secm x tann x can be expressed as a product of powers of sin x and cos x, but it is often more convenient to use the identity tan2 x + 1 = sec2 x and the differentials d(tan x) = sec2 xdx and d(secx) = secx tan xdx. We assume that m and n are non-negative. Case 1: The power m of secx is positive and even: then m = 2M and we have: secm x tann xdx = (sec2 x)M tann xdx = n (sec2 x)M−1 t xsec2 xdx = (1 + tan2 x)M−1 tann xsec2 xdx = and we can make the substitution u = tan x, du = sec2 xdx, and we get M−1 M−1 2 n 2 2 1 + tan x tan xsec xdx = 1+u un du 11 Example: 10 5 sec x tan xdx = 1+u 1 + 4u2 + 6u4 + 4u6 + u8 u5 du = 2 4 u5 du = u5 + 4u7 + 6u9 + 4u11 + u13 du = u8 u10 u12 u14 u6 +4 +6 +4 + +C = 6 8 10 12 14 1 14 1 6 1 8 3 10 1 12 u + u + u + u + u +C = 6 2 5 3 14 1 3 1 1 1 tan6 x + tan8 x + tan10 x + tan12 x + tan14 x + C 6 2 5 3 14 12 If the power of secx is not even, but the power of n of tan x is odd, so that n = 2N + 1, and m is positive, we can make the substitution u = secx, du = secx tan xdx, and get secm x tann xdx = secm−1 x tan2n xsecx tan xdx = N N m−1 2 m−1 2 u tan x du = u sec x − 1 du = u m−1 N 2 u −1 Example: du 5 5 sec x tan xdx = 4 2 2 u (u − 1) du = 1)du = u9 u7 u5 8 6 4 −2 + +C = u − 2u + u du 9 7 5 2 1 1 sec9 x − sec7 x + sec5 x + C 9 7 5 13 u4 (u4 − 2u2 + We are left with the cases where m is odd and n is even, all of which can be reduced to the problem of finding the antiderivative of an odd power of secx. secx + tan x dx = Example: secxdx = secx secx + tan x (sec2 x + secx tan x)dx sec2 x + secx tan x dx = = secx + tan x secx + tan x d(secx + tan x) = ln(secx + tan x) + C secx + tan x 14 Example: I = sec3 xdx Using Integration by Parts, with u = secx, dv = sec2 x, v = tan x, du = secx tan xdx, we get I= sec3 xdx = udv = uv − vdu = secx tan x − tan xsecx tan xdx = secx tan x − tan2 xsecxdx = secx tan x − (sec2 x − 1)secxdx = secx tan x − sec3 xdx + secxdx = secx tan x − I + secx tan x + ln |secx + tan x| + C so 2I = secx tan x + ln |secx + tan x| + C and sec3 xdx = secx tan x + ln |secx + tan x| +C 2 15 secxdx = Example: tan2 xsecxdx appears in the previous calculation, and is one of the simpler cases left: I = secx tan x − tan2 xsecxdx gives us tan2 xsecxdx = secx tan x − I = secx tan x − secx tan x + ln |secx + tan x| +C = 2 secx tan x − ln |secx + tan x| +C 2 16 Integrals of products of sine and cosine functions with different arguments The identities: cos x cos y = 1 cos(x + y) + cos(x − y) 2 1 cos(x − y) − cos(x + y) sin x sin y = 2 1 sin(x − y) + sin(x + y) may be used: 2 1 Example: cos 5t cos 7tdt = (cos(5t + 7t) + cos(5t − 7t)) dt = 2 1 1 1 1 sin 12t + sin 2t + C = (cos 12t + cos(−2t)) dt = 2 2 12 2 sin x cos y = 1 1 sin 12t + sin 2t + C 24 4 17