Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 112 - Practice Test 2 Sections 2.4, 2.5, 2.6, 2.7, 1.8, 3.1, and 3.2 Divide using long division. 8x3 + 18x2 + 13x + 5 1) -4x - 3 2) x4 - 2x3 - 7x2 + 4x + 12 x2 - 3x - 2 3) 8b4 + 12b3 - 2b 2b2 + b Find an nth degree polynomial function with real coefficients satisfying the given conditions. 13) n = 3; 3 and i are zeros; f(2) = 30 Factor the polynomial as the product of factors that are irreducible over the real numbers. Then write the polynomial in completely factored form involving complex nonreal, or imaginary numbers. 14) f(x) = x4 + 2x3 - 4x2 + 8x - 32 (Hint: x2 + 4 is a factor.) Find all zeros of the function and write the polynomial as a product of linear factors. 15) f(x) = 2x4 - 5x3 + 10x2 - 20x + 8 Divide using synthetic division. 4) (x2 + 8x + 9) ÷ (x + 5) 5) 5x3 - 7x2 - 8x + 4 x-2 6) x5 + x3 - 5 x-2 Find the domain of the rational function. x+4 16) f(x) = x2 - 25 17) f(x) = Use synthetic division and the Remainder Theorem to find the indicated function value. 7) f(x) = 4x3 - 8x2 - 4x + 23; f(-3) x+2 x2 + 9 Find the vertical asymptotes, if any, of the graph of the rational function. x 18) h(x) = x(x + 3) Solve the problem. 8) Solve the equation 3x3 - 29x2 + 78x - 40 = 0 given that 4 is a zero of f(x) = 3x3 - 29x2 + 78x - 40. 19) f(x) = Use the Rational Zero Theorem to list all possible rational zeros for the given function. 9) f(x) = 6x4 + 4x3 - 2x2 + 2 20) x 2 x +4 x - 25 x2 - 8x + 15 Find the horizontal asymptote, if any, of the graph of the rational function. 6x2 21) g(x) = 2x2 + 1 Find a rational zero of the polynomial function and use it to find all the zeros of the function. 10) f(x) = x4 + 5x3 - 2x2 - 18x - 12 11) f(x) = x4 - 3x3 + 19x2 + 53x - 174 22) h(x) = 25x3 5x2 + 1 23) f(x) = 15x 3x2 + 1 12) f(x) = x3 + 6x2 - x - 6 1 Graph the rational function. 2x - 9 24) f(x) = x-5 Find the slant asymptote, if any, of the graph of the rational function. x2 + 6x - 8 30) f(x) = x-7 y 31) f(x) = 5 -10 -5 5 6x2 5x2 + 3 Given the graph of f(x), solve f(x) ≥ 0. 32) 10 x y 20 -5 16 12 8 4 Graph the rational function. x2 25) f(x) = x2 - x - 56 -10 -8 -6 -4 -2 -4 2 4 6 8 10 -8 -12 -16 y -20 5 Given the graph of f(x), solve f(x) < 0. 33) y -10 -5 5 10 x 5 -5 -5 Find the indicated intercept(s) of the graph of the function. x-6 26) x-intercepts of f(x) = x2 + 5x - 2 27) x-intercepts of f(x) = 28) y-intercept of f(x) = 29) y-intercept of f(x) = 5 -5 x2 + 3 x2 + 6x + 4 x2 - 5 x2 + 11x - 5 x2 - 7x + 3 2x 2 x x Solve the polynomial inequality and graph the solution set on a number line. Please show signs( + or - ) in each interval. Express the solution set in interval notation. 34) 2x2 - 5x ≥ 7 42) f(x) = (x + 2)3 43) f(x) = x+4 Does the graph represent a function that has an inverse function? 44) y 35) x < 42 - x2 x 36) 9x2 - 2x ≤ 0 A) Yes Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. 16 - 4x 37) ≤0 5x + 8 B) No 45) y x 38) x-2 <0 x+1 A) Yes B) No 46) y 2x 39) <x x+5 x Find the inverse of the one-to-one function. 3 40) f(x) = 8x - 5 A) Yes 41) f(x) = 8x + 4 3 B) No Use the graph of f to draw the graph of its inverse function. 47) Graph the function by making a table of coordinates. 50) f(x) = 5 x y 8 y 10 6 5 4 2 -10 -5 5 10 x -8 -6 -4 -2 2 -5 4 8x 6 -2 -4 -10 -6 -8 48) y 10 51) f(x) = 0.6 x 5 y 6 -10 -5 5 10 x 4 -5 2 -10 -6 -4 -2 2 4 x 6 -2 Graph f as a solid line and f-1 as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of f and f-1 . 49) f(x) = 3 -4 -6 x+3 10 y 52) g(x) = ex - 3. 8 6 y 4 6 2 -10 -8 -6 -4 -2 4 2 4 6 8 x 2 -2 -4 -8 -6 -4 -2 2 -6 -2 -8 -4 -10 -6 4 4 6 8 x Approximate the number using a calculator. Round your answer to three decimal places. 53) e-0.6 Evaluate the expression without using a calculator. 62) log3 243 63) log 1 5 r nt Use the compound interest formulas A = P 1 + and n 64) log 9 9 A = Pe rt to solve. 54) Find the accumulated value of an investment of $7000 at 7% compounded continuously for 6 years. 65) log 2 11 2 55) Find the accumulated value of an investment of $800 at 10% compounded quarterly for 5 years. 66) log Write the equation in its equivalent exponential form. 56) log 9 = 2 b 67) eln 242 Write the equation in its equivalent logarithmic form. 57) 6 3 = x 68) ln 4 e 69) ln e Graph the function. 58) g(x) =log3 x 70) 8 log 103.9 y 6 -6 6 x -6 Find the domain of the logarithmic function. 59) f(x) = log (x - 5) 5 Evaluate the expression without using a calculator. 1 60) log 2 8 61) 10log 6 A) 6 C) 1,000,000 1 100 B) 60 D) 0.000001 5 Answer Key Testname: MTH 112 PRACTICETEST2 1) -2x2 - 3x - 1 + 2) x2 + x - 2 + 2 -4x - 3 25) y 8 6 x2 - 3x - 2 5 4 3) 4b2 + 4b - 2 6 4) x + 3 x+5 3 2 1 5) 5x2 + 3x - 2 -16 6) x4 + 2x3 + 5x2 + 10x + 20 + -8 35 x-2 -1 -2 -3 7) -145 -4 2 8) 4, 5, 3 -5 9) ± -6 1 1 1 2 , ± , ± , ± , ± 1, ± 2 6 3 2 3 26) (6, 0) 27) none 28) 0, 1 29) none 30) y = x + 13 31) no slant asymptote 32) (-∞,-2] ∪ [2,∞) 10) {-1, 2, -3 + 3, -3 - 3} 11) {-3, 2, 2 + 5i, 2 - 5i} 12) {1, -1, -6} 13) f(x) = -6x3 + 18x2 - 6x + 18 14) f(x) = (x + 4)(x - 2)(x - 2i)(x + 2i) 15) f(x) = (2x - 1)(x - 2)(x + 2i)(x - 2i) 16) (-∞,-5)∪(-5,5)∪(5,∞) 17) (-∞,∞) 18) x = -3 19) no vertical asymptote 20) x = 5, x = 3 21) y = 3 22) no horizontal asymptote 23) y = 0 24) 33) (-∞, -1) ∪ (0, 1) 34) (-∞, -1] ∪ 7 ,∞ 2 35) (-7, 6) 36) 0, 2 9 y 10 37) -∞, - 5 -10 -5 5 10 8 or [4, ∞) 5 38) (-1, 2) x 39) (-5, -3) ∪ (0, ∞) -5 40) f-1 (x) = -10 3 5 + 8x 8 x-4 41) f-1 (x) = 8 3 42) f-1 (x) = x - 2 43) f-1 (x) = x2 - 4 44) B 6 8 16 x Answer Key Testname: MTH 112 PRACTICETEST2 45) A 46) B 47) 50) 6 y y 4 10 2 5 -6 -4 -2 2 4 6 x 2 4 6 x -2 -10 -5 5 10 x -4 -5 -6 51) -10 48) 6 y y 10 4 2 5 -6 -10 -5 5 10 -4 -2 x -2 -4 -5 -6 -10 52) 49) y 10 y 6 8 4 6 2 4 2 -6 -4 -2 2 -2 -10 -8 -6 -4 -2 2 4 6 8 x -2 -4 -4 -6 -6 53) 0.549 54) $10,653.73 55) $1310.89 56) b2 = 9 -8 -10 f domain = (-∞, ∞); range = (-∞, ∞) f -1 domain = (-∞, ∞); range = (-∞, ∞) 57) log 7 6 x=3 4 6 x Answer Key Testname: MTH 112 PRACTICETEST2 58) y 6 -6 6 x -6 59) (5, ∞) 60) -3 61) A 62) 5 63) 0 64) 1 65) 11 66) -2 67) 242 1 68) 4 69) 1 70) 31.2 8