Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
SECTION 5.6 5.6 1 3. cot 2. csc s2 (s3 ) 4. sec1 2 5 5. arcsin sin 4 6. sin (2 sin ( )) 1 3 5 s3 2 7. cos1 ■ Find the derivative of the function. Find the domains of the function and its derivative. 36 – 41 1 1. sin 0.5 1 8. sin1 9. sinsin 1 0.7 14. secarctan 2 15. cos(2 sin ( )) 16. sin sin1 ( 3 ) sin1 ( 3 ) ■ ■ ■ ■ ■ 1 2 ■ ■ ■ 18. f x sin 2x 1 19. tx tan x 20. hx arcsin x ln x 21. f t cos1 tt 22. Ft s1 t 2 sin1 t 23. Gt cos1 s2t 1 24. tx tan1x 3 25. Gx sin1xa, a 0 1 1 ■ 1 1 32. y x cot 3x 2 1 34. y sin Copyright © 2013, Cengage Learning. All rights reserved. ■ ■ ■ cos x 1 sin x ■ ■ 1 33. y tan sin x s3 1 35. y tan x ■ ■ ■ ■ ■ arcsin x tan x2 46. lim sin1 xl ■ ■ x1 2x 1 ■ ■ ■ ■ xl ■ ■ ■ ■ ■ ■ y s1 t 53. 55. yx 57. y 1 9x 0.5 dx s1 x 2 50. y 52. ye y x 4 ln x 54. y 1x x9 dx 2 9 56. y 1 cos x dx 58. y 1 t 4 dt dx 2 dx ■ 48. lim tan1x x 2 6 dx 1 x2 51. ■ ■ ■ Evaluate the integral. y 2 31. tt sin 4t 1 ■ xl1 ■ ■ 1 30. f x arctan x ln x ■ 44. lim tan1 x x 49. 3 29. y tan1e x 28. y sin x 2 ■ Find the limit. ■ 49 – 58 27. y sin x 26. Fx tan xa ■ 4 xl possible. 1 ■ 47. lim tan1x 2 2 Find the derivative of the function. Simplify where 1 ■ ■ xl Find a similar simplification of sin2 cos1 x. ■ ■ 45. lim ] 17. It is a fact that cossin x s1 x for 1 x 1. 18 –35 41. Ut 2 arctan t xl 1 ■ 40. Rt arcsin2 t 43. lim tan1 x 2 4 ■ 39. Sx sin1tan1 x 43– 48 13. sin(cos1 ( 5 )) [ 38. Fx ssin12x 42. If hx 3 tan x , find h3. 12. tancos 1 0.5 1 5 13 37. tx sin13x 1 1 4 3 10. tan1 tan 36. f x cos1sin1 x ■ 1 s2 11. sin 1sin 1 ■ 1 S Click here for solutions. Find the exact value of the expression. ■ ■ INVERSE TRIGONOMETRIC FUNCTIONS A Click here for answers. 1–16 INVERSE TRIGONOMETRIC FUNCTIONS 2 ■ ■ ■ ■ 0 ex dx 1 2x tan1 x 2 dx sin x 2 12 0 ■ sin1x dx s1 x 2 ■ ■ 2 ■ SECTION 5.6 INVERSE TRIGONOMETRIC FUNCTIONS 5.6 ANSWERS E Click here for exercises. S Click here for solutions. 1. π 6 3. 2. π 4 5π 6 4. 5. − π 4 6. 24 25 7. π 6 8. − π 4 10. π 3 9. 0.7 √ 12. 3 √ 14. 5 √ √ 16. 19 5+4 2 11. 1 13. 35 15. 119 169 √ 17. 2x 1 − x2 1 x − x2 18. f (x) = √ 19. g (x) = 3x2 1 + x6 ln x arcsin x 20. h (x) = √ + x 1 − x2 cos−1 t 1 − √ t2 t 1 − t2 1−t 1 − t2 22. F (t) = √ 2 (−2t2 1 a2 − x2 a 26. F (x) = 2 a + x2 25. G (x) = √ arctan x ln x + x 1 + x2 4 t4 − 16t2 Copyright © 2013, Cengage Learning. All rights reserved. 31. g (t) = − √ 33. y = [− sin 1, sin 1], (− sin 1, sin 1) 3 , − 23 , 0 , − 23 , 0 2 −9x − 6x 37. g (x) = √ 38. F (x) = − (3x) − cos x 1 + sin2 x 1 , [2, ∞), (2, ∞) (2/x) 1 − 4/x2 −1 39. S (x) = 1 − (tan−1 x)2 1 + x2 , x2 −1 sin 2t ln 2 , (−∞, 0], (−∞, 0) 1 − 4t arctan t 41. U (t) = 2 (ln 2) 1 + t2 , R, R −1 3 42. 162 tan 3 5 40. R (t) = √ π2 4 44. 0 π 6 45. 0 46. π 2 π 49. 2 48. − 50. −1 (cos x) + C −1 (3x) + C 56. − tan ex 29. y = 1 + e2x −1 1 − sin 1 2 · √1 − x2 , x π 2 π 6 (ex ) + C −1 1 53. 12 tan ln x + C 2 −1 2 54. 12 tan x +C 2 −1 1 55. 12 ln x + 9 + 9 · 13 tan x +C 3 2x 1 − x4 −1 −1 28. y = √ 32. y = 2x cot 1 52. tan 2 sin−1 x 1 − x2 2 −1 51. 12 sin t +C 27. y = √ 47. 3x2 24. g (x) = 1 + x6 30. f (x) = 1 (1 + x2 ) (tan−1 x)2 36. f (x) = − 43. 1 + 3t − 1) 23. G (t) = − 35. y = − −1 2 sin x + 2 sin2 x [− tan 1, tan 1], (− tan 1, tan 1) 21. f (t) = − 34. y = π 3 3x2 1 + 9x2 57. 13 tan 58. π2 72 SECTION 5.6 5.6 INVERSE TRIGONOMETRIC FUNCTIONS ■ SOLUTIONS E Click here for exercises. −1 (0.5) = π6 because sin π6 = 0.5. √ √ −1 2. csc 2 = π4 because csc π4 = 2. √ √ −1 3. cot because cot 5π = − 3. − 3 = 5π 6 6 1. sin −1 2 = π3 because sec π3 = 2. arcsin sin 5π = arcsin − √12 = − π4 4 Let θ = sin−1 35 . Then sin θ = 35 2 ⇒ cos θ = 1 − 35 = 45 , so . sin 2 sin−1 35 = sin 2θ = 2 sin θ cos θ = 2 · 35 · 45 = 24 25 √ √ cos−1 23 = π6 because cos π6 = 23 . sin−1 − √12 = − π4 because sin − π4 = − √12 . sin sin−1 (0.7) = 0.7 since 0.7 is in [ 1, 1]. √ tan−1 tan 4π = tan−1 3 = π3 since π3 is in − π2 , π2 . 3 4. sec 5. 6. 7. 8. 9. 10. −1 (sin 1) = 1 since − π2 ≤ 1 ≤ π2 . √ −1 12. tan cos 0.5 = tan π3 = 3 −1 4 13. Let θ = cos , so cos θ = 45 . Then 5 −1 4 2 9 sin cos 1 − 45 = 25 = 35 . = sin θ = 5 11. sin ⇒ √ sec2 θ = 1 + tan2 θ = 1 + 4 = 5 ⇒ sec θ = 5 ⇒ √ sec (arctan 2) = sec θ = 5. 5 −1 5 15. Let θ = sin , so . Then sin θ = 13 13 5 cos 2 sin−1 13 = cos 2θ = 1 − 2 sin2 θ 5 2 = 1 − 2 13 = 119 . 169 −1 1 −1 2 16. Let x = sin and y = sin . Then 3 3 √ 2 sin x = 13 , cos x = 1 − 13 = 2 3 2 , sin y = 23 , √ 2 cos y = 1 − 23 = 35 , so sin sin−1 13 + sin−1 23 = sin (x + y) Copyright © 2013, Cengage Learning. All rights reserved. 14. Let θ = arctan 2, so tan θ = 2 = sin x cos y + cos x sin y √ √ = 13 35 + 2 3 2 23 √ √ 5+4 2 = 19 −1 17. Let y = cos x. Then cos y = x √ ⇒ sin y = 1 − x2 since 0 ≤ y ≤ π. So √ sin 2 cos−1 x = sin 2y = 2 sin y cos y = 2x 1 − x2 . −1 18. f (x) = sin (2x − 1) ⇒ 1 1 f (x) = (2) = √ 2 x − x2 1 − (2x − 1) 3 −1 19. g (x) = tan x ⇒ 1 3x2 2 g (x) = = 2 3x 3 1 + x6 1 + (x ) 20. h (x) = (arcsin x) ln x ⇒ ln x arcsin x h (x) = √ + x 1 − x2 cos−1 t ⇒ t √ t −1 1 − t2 − cos−1 t f (t) = t2 −1 cos t 1 =− − √ t2 t 1 − t2 √ −1 22. F (t) = 1 − t2 + sin t ⇒ −2t 1 1−t F (t) = √ +√ = √ 2 1 − t2 1 − t2 1 − t2 √ −1 23. G (t) = cos 2t − 1 ⇒ 2 1 √ G (t) = − 2 2t −1 1 − (2t − 1) 1 = − 2 (−2t2 + 3t − 1) 3 −1 24. g (x) = tan x ⇒ 1 3x2 g (x) = 3x2 = 2 1 + x6 1 + (x3 ) 21. f (t) = −1 25. G (x) = sin (x/a) ⇒ 1/a 1 1 = = √ G (x) = 2 − x2 2 /a2 2 a a 1 − x 1 − (x/a) −1 26. F (x) = tan (x/a) ⇒ 1 1 a F (x) = · = 2 a + x2 1 + (x/a)2 a −1 2 27. y = sin x ⇒ d −1 2 sin−1 x y = 2 sin−1 x sin x = √ dx 1 − x2 −1 28. y = sin x2 ⇒ d 2 1 2x y = x = √ dx 2 1 − x4 1 − (x2 ) −1 29. y = tan (ex ) ⇒ y = d x 1 ex (e ) = 2 x 1 + e2x 1 + (e ) dx 3 4 ■ SECTION 5.6 INVERSE TRIGONOMETRIC FUNCTIONS 30. f (x) = (arctan x) ln x Dom (F ) = x | −1 ≤ 2/x ≤ 1 and sin−1 (2/x) ≥ 0 ⇒ 1 arctan x 1 ln x = + ln x · + x 1 + x2 x 1 + x2 4 −1 ⇒ 31. g (t) = sin t 1 4 4 g (t) = − 2 = −√ 4 − 16t2 t 2 t 1 − (4/t) f (x) = arctan x · 2 −1 32. y = x cot (3x) ⇒ y = 2x cot−1 (3x) + x2 2x cot−1 (3x) − −1 34. y = sin y = cos x 1 + sin x cos x 1 + sin2 x ⇒ 2 1 − [cos x/ (1 + sin x)] · − sin x (1 + sin x) − cos2 x (1 + sin x)2 1 − (1 + sin x) · 2 (1 + sin x)2 1 + 2 sin x + sin2 x − cos2 x (1 + sin x) −1 2 sin x + 2 sin2 x −1 −1 35. y = tan x ⇒ −2 y = − tan−1 x = {x | sin (−1) ≤ x ≤ sin 1} = [− sin 1, sin 1] Dom (f ) = x | −1 < sin−1 x < 1 = (− sin 1, sin 1) −1 (3x + 1) ⇒ 3 3 g (x) = = √ , 2 −9x2 − 6x 1 − (3x + 1) Copyright © 2013, Cengage Learning. All rights reserved. 37. g (x) = sin Dom (g) = {x | −1 ≤ 3x + 1 ≤ 1} = x | − 23 ≤ x ≤ 0 = − 23 , 0 Dom (g ) = {x | −1 < 3x + 1 < 1} = − 23 , 0 −1 38. F (x) = sin (2/x) ⇒ 1 1 2 F (x) = −1 · − 2 x 2 sin (2/x) 1 − (2/x)2 x2 1 −1 sin = {x | tan (−1) ≤ x ≤ tan 1} = [− tan 1, tan 1] Dom (S ) = x | −1 < tan−1 x < 1 = (− tan 1, tan 1) t 40. R (t) = arcsin 2 (2/x) 1 − 4/x2 ⇒ 2t ln 2 , 2t ln 2 = √ 1 − 4t 1 − (2t )2 Dom (R) = t | −1 ≤ 2t ≤ 1 = {t | t ≤ 0} = (−∞, 0], 1 R (t) = Dom (R ) = (−∞, 0) 41. U (t) = 2 ⇒ U (t) = 2arctan t (ln 2) 1 + t2 , Dom (U ) = Dom (U ) = R 4 −1 42. h (x) = 3 tan x ⇒ 3 3 ⇒ h (x) = 4 3 tan−1 x 1 + x2 3 3 −1 3 h (3) = 4 3 tan−1 3 = 162 tan 3 10 5 2 π 2 2 π2 = tan−1 x = lim tan−1 x = x→∞ x→∞ 2 4 arcsin x 44. lim = 0 since lim arcsin x = π2 and x→1− tan (πx/2) x→1− lim tan (πx/2) = ∞. 43. lim 1 1 =− 1 + x2 (1 + x2 ) (tan−1 x)2 −1 −1 36. f (x) = cos sin x ⇒ 1 1 f (x) = − −1 2 · √1 − x2 , 1 − sin x Dom (f ) = x | −1 ≤ sin−1 x ≤ 1 =− Dom (F ) = {x | x > 2} = (2, ∞) −1 −1 39. S (x) = sin tan x ⇒ −1 S (x) = 1 − (tan−1 x)2 1 + x2 Dom (S) = x | −1 ≤ tan−1 x ≤ 1 arctan t 1 = = 3x2 1 + 9x2 (sin x) ⇒ y = 33. y = tan −1 1 − (3) = 1 + (3x)2 = {x | 0 < 2/x ≤ 1} = {x | x ≥ 2} = [2, ∞) x→1− tan−1 x = 0 since lim tan−1 x = x→∞ x→∞ x lim x = ∞. 45. lim π 2 and x→∞ Or: Note that 0 < Theorem. −1 46. lim sin x→∞ sin−1 1 2 = π 6 x+1 2x + 1 −1 = sin x+1 lim x→∞ 2x + 1 −1 x2 = −1 x − x2 = − π2 since 47. lim tan x→∞ 48. lim tan x→∞ π/2 tan−1 x < and use the Squeeze x x π 2 = since x2 → ∞ as x → ∞. x − x2 = x (1 − x) → −∞ as x → ∞. √3 √3 6 −1 49. dx = 6 tan x 1 1 + x2 1 −1 √ = 6 tan 3 − tan−1 1 π = 6 3 − π4 = π2 0.5 0.5 dx √ 50. = sin−1 x 0 = sin−1 12 − sin−1 0 = 2 1−x 0 π 6 SECTION 5.6 2 51. Let u = t . Then du = 2t dt, so t 1 √ dt = 4 2 1−t 1 √ du = 1 − u2 = 12 sin−1 t2 + C. x 1 2 sin−1 u + C x 52. Let u = e . Then du = e dx, so x e dx = e2x + 1 du = tan−1 u+C = tan−1 (ex )+C. u2 + 1 53. Let u = ln x. Then du = (1/x) dx ⇒ u du = 12 tan−1 +C 2 4+u 2 = 12 tan−1 12 ln x + C. dx = x 4 + (ln x)2 dx x. Then du = , so 1 + x2 2 tan−1 x dx = u du = 12 u2 + C = 12 tan−1 x + C. 1 + x2 x+9 x 1 55. dx = dx + 9 dx x2 + 9 x2 + 9 x2 + 9 = 12 ln x2 + 9 + 9 · 13 tan−1 13 x + C −1 54. Let u = tan [Let u = x2 + 9 in the first integral and use Formula 14 in the second.] 56. Let u = cos x. Then du = − sin x dx, so sin x dx = − 1 + cos2 x 1 du = − tan−1 u + C 1 + u2 = − tan−1 (cos x) + C. 57. Let u = 3x. Then du = 3 dx, so dx 1 = 1 + 9x2 3 = 1/2 Copyright © 2013, Cengage Learning. All rights reserved. 0 du = 1 + u2 1 3 tan−1 u + C tan−1 (3x) + C. 1 x. Then du = √ dx, so 1 − x2 π/6 π/6 sin−1 x u2 √ dx = u du = 2 0 1 − x2 0 1 π 2 π2 = = . 2 6 72 −1 58. Let u = sin 1 3 INVERSE TRIGONOMETRIC FUNCTIONS ■ 5