Download 12 SUMMARY OF INTEGRATION TECHNIQUES Integration by

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SUMMARY OF INTEGRATION TECHNIQUES
Integration by Standard forms:
xn+1
1 (Ax + B)n+1
[f(x)]n+1
n
n
n
dx
=
+
c,
(Ax
+
B)
dx
=
+
c,
f
'(x)
[f(x)]
dx
=
x






n+1
n + 1 + c,
A n+1
for n  –1
1

 x dx = ln | x | + c
for n  –1
for n  –1
1
f '(x)
1


 f(x) dx = ln | f(x) | + c
 Ax + B dx = A ln | Ax + B | + c
1
Ax+B
 f '(x) e f(x) dx = e f(x) + c
 ex dx = ex + c
dx = A eAx+B + c



 e
1 aAx+B
af(x)
ax
x
Ax+B
f(x)
a
dx
=
+
c
a
dx
=
+
c
f
'(x)
a
dx
=






ln a
ln a + c
A ln a
Integration of Trigonometric Functions:

 f (x) sin f(x) dx = –cos f(x) + c
 sin x dx = –cos x + c


 cos x dx = sin x + c
2

 sec x dx = tan x + c

 f (x) cos f(x) dx = sin f(x) + c
2

 f (x) sec f(x) dx = tan f(x) + c
 cosec2 x dx = –cot x + c


 sec x tan x dx = sec x + c
 f (x) cosec2 f(x) dx = –cot f(x) + c


 f (x) sec f(x) tan f(x) dx = sec f(x) + c

 cosec x cot x dx = –cosec x + c
2
2

 tan x dx = 
 sec x – 1 dx = tan x – x + c

 f (x) cosec f(x) cot f(x) dx = –cosec f(x) + c
2
 cot2 x dx = 

 cosec x – 1 dx = – cot x – x + c
Using Double Angle Formulas: 
 cos2 x dx
1 + cos 2x
x sin 2x
dx
=2+ 4 +c
2
1 – cos 2x
x sin 2x
=
dx
=2– 4 +c


2
1
=
 sin (a + b)x + sin (a – b)x dx
2
1
=
 sin (a + b)x – sin (a – b)x dx
2
1
=
 cos (a + b)x + cos (a – b)x dx
2
1
=
–2
 cos (a + b)x – cos (a – b)x dx
1 –1 x
a tan a + c
x
sin–1 a + c ,
|x|<a
1
x–a
x>a
2a ln x + a + c ,
1
a+x
ln
|x|<a
2a a – x + c,

ln (sec x) + c ,
|x|<2
ln (sin x) + c ,
0<x<
–ln (cosec x + cot x) + c ,
0<x<

ln (sec x + tan x) + c ,
|x|<2
uv– 
 u  v dx
=
2

 sin x dx
Using Factor Formulas:

 sin ax cos bx dx

 cos ax sin bx dx
 cos ax cos bx dx


 sin ax sin bx dx
Given in formula list:
1

 x2 + a2 dx =
1

 a2 – x2 dx =
1

 x2 – a2 dx =
1

 a2 – x2 dx =

 tan x dx
=
=

 cot x dx

 cosec x dx =

 sec x dx
=


=

 u v  dx
Order for choosing u: Logarithm, Inverse Trigonometric, Algebraic, Trigonometric, Exponential
Integration by Parts:
12
E.g.
e ln x dx
1
E.g.
1
Let u = ln x  u  = x
Let v  = 1  v = x
e
e 1
= [ x ln x ]1 – 
1 x x dx
e
= [ e ln e ] – 
1 1 dx
e
= e – [ x ]1
=e–[e–1]
=1
E.g. 
 ex sin x dx
x
= ex sin x – 
 e cos x dx
x
= ex sin x – [ ex cos x – 
 e (–sin x) dx ]
x
x
x
2
 e sin x dx = e sin x – e cos x
1 x
x

 e sin x dx = 2 e (sin x – cos x) + c
2
d 2
3 x
Find dx ex and deduce 
 x e dx.
d x2
x2
dx e = 2x e
2
3 x

 x e dx
2
1
2
x2
=2
Let u = x2, v = 2xex
 x 2x e dx
2
1
x2
= 2 [ x2 ex – 
 2x e dx ]
2
2
1
= 2 [ x2 ex – ex ] + c
Let u = sin x, v'= ex  u' = cos x, v = ex
Let u = cos x, v'= ex  u' = –sin x, v = ex
Integration by Splitting the Numerator
4x + 5
E.g. 
 x2 + 2x + 3 dx
f (x)
2x + 2
1
1
=2
 rewrite the integral as 
 x2 + 2x + 3 dx + 
 (x + 1)2 + 2 dx
 f(x) dx + 
 quadratic dx
1
x+1
= 2 ln | x2 + 2x + 3 | +
tan–1
+c
2
2
Integration by Partial Fractions
3x3 + x
3
2
1
E.g. 
 break up into partial fractions
 (x + 1)2(x2 + 1) dx = 
 x + 1 – (x + 1)2 – x2 + 1 dx
2
= 3 ln | x + 1 | + x + 1 – tan–1 x + c
Integration by Substitution
1
1
E.g. Use the substitution x = tan  to solve 
2
0 x + 1 dx
dx
x = tan 

= sec2 
 use this to replace dx
d
When x = 0, tan  = 0   = 0
 to replace the two limits

When x = 1, tan  = 1   = 4
1
1
0 x2 + 1 dx
1
1
/4
=
sec2  d
 substitute the integrand 2
, dx and the two limits
2
0
x +1
tan  + 1
/4
=
0 sec  d
/4
= [ ln | sec  + tan  | ]
0
= ln ( 2 + 1 )
13
Related documents