Download The propagators of the free particle and particle in a box in polymer

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MOT QM PQM FPP PPB SP
The propagators of the free particle and particle in a box in
polymer quantum mechanics.
Ernesto Flores González
Departamento de Fı́sica, Universidad Autónoma Metropolitana-Iztapalapa,
Adviser:
Hugo A. Morales Técotl
Collaboration:
Carlos M. Reyes and Juan D. Reyes.
Mexi-Lazos 2012 November 9th
MOT QM PQM FPP PPB SP
Motivation
General: Polymer quantum mechanics is a “toy model”which gives a
friendly introduction to technical and conceptual issues of Loop Quantum
Gravity by simple mechanics systems.
1
Polymer → Schrödinger: ψpoly → ψsch and Epoly → Esch .
A. Ashtekar, S. Fairhurst and J. L. Willis, Classical Quantum Gravity 20
(2003).
A. Corichi, T. Vukasinac and J. A. Zapata, Phys. Rev.D76, 044016 (2007).
2
Free Scalar Field Propagator: G.M. Hossain, V. Husain, and S.S. Seahra,
Phys. Rev.D82, 124032 (2010).
MOT QM PQM FPP PPB SP
Schrödinger Representation
Canonical Quantization:
{q, p} = 1
7→
[b
q , pb] = i~b
1.
Dynamics
Kinematics
2
q̂, p̂ 7→ Hsch = L (R, dµ)
b p̂) |ψi = E |ψi 7→ Hsch
H(q̂,
Weyl Algebra
U(λ)V (µ) = e −iλµ V (λ)U(µ), U(λ1 )U(λ2 ) = U(λ1 + λ2 ),
V (µ1 )V (µ2 ) = V (µ1 + µ2 ).
Stone-Von Neumann Theorem:
b
If U(λ)
and Vb (µ) are weakly continuous in λ and µ then the representation is unitarily
equivalent to the Schrödinger representation and ∃ q̂ and p̂ self-adjoint such that
b
U(λ)
= e iλx̂ ,
i
Vb (µ) = e ~ p̂µ .
MOT QM PQM FPP PPB SP
Kinematics (PQM).
xj → |xj i , hxi |xj i = δi,j ,
|ψi =
n
X
ai |xi i ,
i=1
E .V . =



|ψi =
n
X
j=1
aj |xj i , ∀ γ = {xj } ⊂ R



ψ(x) =
N
X
j=1
aj δxj (x),
MOT QM PQM FPP PPB SP
Polymer Hilbert Space
Hpoly =

∞
 X

j=−∞
aj δxj (x) :
∞
X
j=−∞


|aj |2 < ∞ ,

Hpoly = L2 (R, dµc ).
Representation of the Weyl Algebra.
Û(λ) |xj i = e iλxj |xj i &
V̂ (µ) |xj i = |xj − µi ;
but in this representation Vb is not weakly continuous in µ:
b
lı́m hxi | V̂ (µ) |xj i =
6 hxi | V̂ (0) |xj i ⇒ @ p̂, U(λ)
O.K. ⇒ ∃ x̂.
µ7→0
POLYMER REPRESENTATION IS UNITARILY INEQUIVALENT TO THE
SCHRÖDINGER ONE.
MOT QM PQM FPP PPB SP
Dynamics (PQM)
How is Hb introduced in Hpoly if @ p̂?
p2 ∼
i
−i
i
~2 h
2 − e ~ µ0 p − e ~ µ0 p
2
µ0
7→
i
~2 h
pb2 = 2 2 − Vb (µ0 ) − Vb (−µ0 ) .
µ0
The eigenvalue equation of the Hamiltonian becomes a difference equation:
2mµ20
(j−1)
+
ψ
=
2
−
ψx(j+1)
(E
−
V(x
+
jµ
))
ψx(j)
.
0
0
x0
0
0
~2
The free particle A Corichi et al
i
Eµ0 ,n
ψp0 (xj ) = e − ~ xj p ,
~2
= mµ
1 − cos µ~0 p .
2
0
The particle in a box G Chacón et al
q
ψn0 (j) = N2 sin nπj
,
N
2 ~
1 − cos nπ
.
Eµ0 ,n = mµ
2
N
0
MOT QM PQM FPP PPB SP
Free particle propagator (PQM).
Propagator (SAKURAI)
i b
k(xj , t; xr , t0 ) := hxj | exp − Hpoly (t − t0 ) |xr i ,
~
xj − xr
~(t − t0 )
= i l Jl (z) e −iz , z =
, l =j −r =
.
µ0
mµ20
Properties
ψp (xj , t) =
∞
X
i
k(xj , t; xr , t0 )ψp (xr , t0 ) = exp − E (t − t0 ) ψp (xj , t0 ).
~
r =−∞
“Composition”:k(xs , t2 ; xp , t0 ) =
lı́mt−→t0 k(xj , t; xr , t0 ) =
i r −j J
P∞
j=∞
r −j (0)
k(xs , t2 ; xj , t1 )k(xj , t1 ; xp , t0 ). o.k.
= δxj ,xr . o.k.
∂
bpoly .
K (xs , t2 ; xp , t0 ) is Green’s function of the operator: i~ ∂t
−H
MOT QM PQM FPP PPB SP
,
,
Continuum approximation: k(xj , t; xr , t0 )poly −→ K (x, t; x , t )Sch
1
We have z =
λ
2πµ0 l,
if λ ∼ 10−10 m, µ0 ∼ lp ∼ 10−35 m → z l. Therefore
Jl (z) is the dominant factor in k(xi , xj ; t, t0 )poly , moreover we can use its
asymptotic expansion.
k(xi ,xj ;t,t0 )poly
µ0
2
µ0 dµc → dµSchr ⇒
3
But it is insufficient to take only the limit µ0 → 0, we need also to consider
:= k(xj , t; xr , t0 )Shr .
the limit l → ∞, keeping xj − xr = µ0 l fixed.
This yields
k(xj , t; xr , t0 )
=
l→∞ µ0 →0
µ0
⇒ lı́m lı́m
r
m
exp
2iπ~(t − t0 )
im(xj − xr )2
2~(t − t0 )
.
MOT QM PQM FPP PPB SP
The method of images.
In agreement with the method of images
we obtain
kci (xj , t; xr + 2kN, t0 )
=
The potential for one point charge between
two infinite plane conductors can be
written in the form
Φ = −q
∞
X
n=−∞
kpi (xj , t; xr + 2kN, t0 )
−kpi (xj , t; −xr + 2kN, t0 ),
∞ n
X
−iz
= e
i j−r −2kN Jj−r −2kN (z)
k=−∞
{Gf (~
r , [2nd + y ]x̂) − Gf (~
r , [2nd + (−y )]x̂)}
o
− i j+r −2kN Jj+r −2kN (z) ,
MOT QM PQM FPP PPB SP
Relationship between kci (xj , t; xr + 2kN, t0 ) and kce (xj , t; xr , t0 ).
N−1
2 X
nπj
nπr −iz [1−cos( nπ
N )] .
=
sin
sin
e
(1)
N n=1
N
N
P∞
If we introduce the Jacobi-Anger expansion e iz cos θ = k=−∞ i k Jk (Z )e ikθ in (1) it turns
kce (xj , t; xr , t0 )
out
kce (xj , t; xr , t0 ) =
N−1 ∞
e −iz X X k
nπ(j − r − k)
nπ(j + r − k)
i Jk (z) cos
− cos
.
N n=1
N
N
k=−∞
We can verify
N−1
X
n=1
cos
nπp N
= −1 +
∞ X
m−∞
Nδp,2mN
1
p
+ [1 − (−1) ]δp,m ,
2
and then obtain
kce (xj , t; xr , t0 ) = kci (xj , t; xr + 2kN, t0 ).
MOT QM PQM FPP PPB SP
Summary and perspectives
1
We have calculated the propagators of the free particle and the particle in a
box in the polymer representation and we have checked some consistency
properties they satisfy.
2
We have put in contact both propagators with their continuum analogs.
3
Future: To do the analysis of the continuum limit of the propagators
through the Wilson’s renormalization group:
A. Corichi, T. Vukasinac and J. A. Zapata, Classical Quantum Gravity 24
(2007).
4
Future: To calculate the propagator for the simple harmonic oscillator.
Related documents