Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Coronary Heart Disease Evaluation of Multiple Biomarkers of Cardiovascular Stress for Risk Prediction and Guiding Medical Therapy in Patients With Stable Coronary Disease Marc S. Sabatine, MD, MPH; David A. Morrow, MD, MPH; James A. de Lemos, MD; Torbjorn Omland, MD, PhD; Sarah Sloan, MS; Petr Jarolim, MD, PhD; Scott D. Solomon, MD; Marc A. Pfeffer, MD, PhD; Eugene Braunwald, MD Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 Background—Circulating biomarkers can offer insight into subclinical cardiovascular stress and thus have the potential to aid in risk stratification and tailoring of therapy. Methods and Results—We measured plasma levels of 4 cardiovascular biomarkers, midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), and copeptin, in 3717 patients with stable coronary artery disease and preserved left ventricular ejection fraction who were randomized to trandolapril or placebo as part of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial. After adjustment for clinical cardiovascular risk predictors and left ventricular ejection fraction, elevated levels of MR-proANP, MR-proADM, and CT-proET-1 were independently associated with the risk of cardiovascular death or heart failure (hazard ratios per 1-SD increase in log-transformed biomarker levels of 1.97, 1.48, and 1.47, respectively; Pⱕ0.002 for each biomarker). These 3 biomarkers also significantly improved metrics of discrimination when added to a clinical model. Trandolapril significantly reduced the risk of cardiovascular death or heart failure in patients who had elevated levels of ⱖ2 biomarkers (hazard ratio, 0.53; 95% confidence interval, 0.36 – 0.80), whereas there was no benefit in patients with elevated levels of 0 or 1 biomarker (hazard ratio, 1.09; 95% confidence interval, 0.74 –1.59; Pinteraction⫽0.012). Conclusions—In patients with stable coronary artery disease and preserved left ventricular ejection fraction, our results suggest that elevated levels of novel biomarkers of cardiovascular stress may help identify patients who are at higher risk of cardiovascular death and heart failure and may be useful to select patients who derive significant benefit from angiotensin-converting enzyme inhibitor therapy. (Circulation. 2012;125:233-240.) Key Words: angiotensin-converting enzyme inhibitors 䡲 biomarkers 䡲 coronary disease E levated levels of circulating biomarkers related to cardiac volume or pressure overload offer insight into subclinical cardiac stress and thus have the potential to aid in risk stratification.1 Specifically, elevated levels of B-type natriuretic peptide (BNP; either the hormone or the aminoterminal fragment of the prohormone [NT-proBNP]) have been shown to be predictive of mortality and/or heart failure events across a broad range of individuals, ranging from the general population to patients with overt heart failure.1–7 relation to cardiomyocyte and/or vascular stress offers the potential for more refined risk assessment. Specifically, atrial natriuretic peptide (ANP) is a vasodilator and natriuretic that is synthesized in the myocardium in response to increased wall tension.8 Adrenomedullin (ADM) is a potent vasodilator synthesized in the adrenal medulla, vascular endothelial cells, heart, and elsewhere in response to physical stretch and specific cytokines, with levels in the heart elevated in the setting of pressure and volume overload.9,10 Endothelin-1 (ET-1) is a potent vasoconstrictor and profibrotic hormone that is secreted by vascular endothelial cells, with levels correlating with shear stress and pulmonary artery pressure.11 Copeptin is a stable peptide derived from the precursor to Clinical Perspective on p 240 Development of newer assays that target more stable epitopes of hormones or prohormones that are released in Received August 24, 2011; accepted December 7, 2011. From the TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA (M.S.S., D.A.M., S.S., E.B.); Division of Cardiology, University of Texas Southwestern Medical Center, Dallas (J.A.d.L.); Division of Medicine, Akershus University Hospital and Center for Heart Failure Research and KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway (T.O.); Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (P.J.); and Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (S.D.S., M.A.P.). Guest Editor for this article was Gregg C. Fonarow, MD. The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA. 111.063842/-/DC1. Correspondence to Marc S. Sabatine, MD, MPH, TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, 350 Longwood Ave, Boston, MA 02115. E-mail [email protected] © 2011 American Heart Association, Inc. Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.111.063842 233 234 Circulation January 17, 2012 Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 arginine vasopressin, a vasoconstrictor that is secreted from the posterior pituitary in response not only to osmotic stimuli but also to hemodynamic changes detected by cardiac and vascular baroreceptors.12 Higher levels of these biomarkers have been associated with an increased risk of death and/or heart failure events in patients with established heart failure.13–16 The availability of an assay panel for these 4 biomarkers of cardiovascular stress that have shown promise in patients with established heart failure created the opportunity to investigate their utility in a broader population. Angiotensin-converting enzyme (ACE) inhibitors substantially reduce the risk of death and heart failure events in patients with heart failure, with the greatest benefit in those patients with the most clinically severe heart failure.17 Among patients with acute myocardial infarction (MI), the benefit of ACE inhibitors is greatest in those with high-risk clinical features such as anterior MI or depressed left ventricular systolic function.18 In contrast, the role of ACE inhibitors in lower-risk patients with stable coronary artery disease (CAD) without heart failure is less clear.19 –21 We explored the hypotheses that in such patients, elevated levels of midregional (MR) pro-ANP, MR-proADM, C-terminal proET-1 (CT-proET-1), and copeptin would offer prognostic value for cardiovascular death and heart failure independently of clinical risk factors and would identify patients who derive greater clinical benefit from the use of an ACE inhibitor. We tested these hypotheses by measuring plasma levels of these novel biomarkers of cardiovascular stress in 3717 patients with stable CAD and preserved left ventricular ejection fraction (LVEF) who were randomized to trandolapril or placebo as part of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial. Methods Patient Population This study involved 3717 patients with documented stable CAD who had been enrolled in the PEACE trial (www.ClinicalTrials.gov; unique identifier, NCT00000558) and provided a sample of blood at the time of enrollment. The design and main outcomes of the PEACE trial have been published previously,21 and salient features are detailed in the Methods section and Table I in the online-only Data Supplement. In brief, subjects were free of heart failure at baseline, and none had been hospitalized with an acute coronary syndrome or had undergone coronary revascularization within the 3 months preceding trial entry. Both the parent clinical trial and this substudy were approved by the relevant institutional review boards, and informed consent was obtained from all patients. Biomarker Analyses Baseline plasma levels of MR-proANP,22 MR-proADM,23 CTproET-1,24 and copeptin25 (assays from B.R.A.H.M.S. GmbH, Henningsdorf, Germany) were determined in the Thrombolysis in Myocardial Infarction (TIMI) Clinical Trials Laboratory (Boston, MA) as detailed in the Methods section and Table II in the online-only Data Supplement. Baseline levels of NT-proBNP and cardiac troponin T (cTnT) measured with a highly sensitive assay had been determined in this population, as previously published and summarized in the Methods section in the online-only Data Supplement.6,26 All testing was performed by personnel blinded to clinical outcomes and treatment allocation. Outcomes On the basis of prior data regarding the predictive ability of biomarkers of cardiac stress,6 the primary outcome in this analysis was the composite of cardiovascular death or hospitalization for heart failure. Additionally, we explored other major adverse cardiovascular events that had been recorded in patients in the trial, including all-cause death, acute MI, acute stroke, and coronary revascularization (percutaneous or surgical). Event adjudication is detailed in the Methods section in the online-only Data Supplement. All clinical events were classified before biomarkers were measured. Statistical Analyses Baseline characteristics are reported as mean⫾SD for normally distributed continuous variables and as counts and percentages for categorical variables. Wilcoxon rank-sum and 2 tests for trend were used to test for differences in continuous and categorical baseline characteristics between quartiles of biomarkers. The Spearman correlation was used to calculate the association between different biomarkers and categorized based on standard cut points.27 The cumulative incidences of clinical outcomes across quartiles of each biomarker were compared by use of a log-rank test. Cox proportional-hazards models were used to examine the association between biomarker levels and outcome data. In these models, biomarker levels were examined both as a continuous variable (after natural logarithmic transformation) and as a categorical variable by quartiles. Associations were adjusted for age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior MI, prior percutaneous coronary intervention or coronary artery bypass grafting, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to apolipoprotein A, LVEF, aspirin use, -blocker use, and lipid-lowering medication use. Starting with a model containing the aforementioned clinical covariates, a forward selection algorithm (P⬍0.05 to enter the model) was used to select among the 4 novel biomarkers, as well as NT-proBNP and cTnT. The incremental performance of the biomarkers in addition to clinical predictors was further evaluated by calculating changes in the C statistic, integrated discrimination improvement, and category-free net reclassification improvement metrics (see the Methods section in the online-only Data Supplement for further details).28 –30 To examine for heterogeneity in the effect of trandolapril on the risk of cardiovascular death or heart failure, hazard ratios (HRs) were calculated in patients who were and were not in the highest-risk category as defined by being in the top quartile of a biomarker level. To test for statistically significant effect modification, a Cox proportional hazards model was created that included a term for trandolapril, a term for biomarker risk category, and an interaction term. A value of P⬍0.05 was considered to indicate statistical significance, and all tests were 2 sided. No adjustment for multiple comparisons was performed. Although based on previous work with these biomarkers in other populations, all of the analyses we have performed in this biomarker substudy are inherently exploratory. Analyses were performed with STATA/IC (version 10.1, STATA Corp, College Station, TX) and R (version 2.12.1). Results Baseline Characteristics of the Patients and Biomarker Levels Baseline measurements of the 4 novel biomarkers were available for 3717 patients from the PEACE trial. The clinical characteristics of the patients are given in Table 1. By design, all patients had stable CAD, and LVEF was preserved at a mean⫾SD value of 58.7⫾9.6%. Median levels of MR-proANP, MR-proADM, CT-proET-1, and copeptin at baseline in patients in the PEACE trial were 90.45 pmol/L (25th–75th percentile, 63.68 –128.3 pmol/L), 0.53 nmol/L (25th–75th percentile, 0.45– 0.64 nmol/L), 47.82 pmol/L (25th–75th percentile, 39.04 –57.02 pmol/L), and 6.47 pmol/L (25th–75th percentile, 0 –10.67 pmol/L), respectively. The levels tended to be higher than those seen in healthy populations, but with the exception of MR-proADM, the majority of values were lower than the 97.5th percentile reported in healthy populations and lower than the values in patients with Sabatine et al Table 1. Biomarkers of Cardiovascular Stress in Stable CAD Baseline Characteristics of Patients Baseline Characteristic All Placebo Trandolapril 3717 1868 1849 Age, y 64.1⫾8.2 64.1⫾8.2 64.2⫾8.1 Female sex, n (%) 701 (18.9) 334 (17.9) 367 (19.9) Weight, kg 83.9⫾15.7 83.7⫾15.7 84.2⫾15.6 1658 (44.6) 835 (44.7) 823 (44.5) Patients, n Hypertension, n (%) Diabetes mellitus, n (%) 602 (16.2) 294 (15.7) 308 (16.7) Current smoker, n (%) 564 (15.2) 290 (15.5) 274 (14.8) Prior MI, n (%) 2087 (56.2) 1076 (57.6) 1011 (54.7) Prior PCI or CABG, n (%) 2697 (72.6) 1367 (73.2) 1330 (72.0) Aspirin use, n (%) 3389 (91.2) 1721 (92.2) 1668 (90.3) -blocker use, n (%) 2303 (62.0) 1156 (61.9) 1147 (62.1) Lipid-lowering therapy use, n (%) 2667 (71.8) 1334 (71.5) 1333 (72.2) SBP, mm Hg 133.4⫾16.8 133.4⫾16.8 133.3⫾16.8 Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 DBP, mm Hg 78.1⫾10.0 78.2⫾10.2 78.0⫾9.8 GFR, mL 䡠 min⫺1 䡠 1.73 m⫺2 77.9⫾19.4 78.3⫾19.4 77.6⫾19.3 ApoB, mg/dL 107.2⫾23.1 107.6⫾22.9 106.8⫾23.2 ApoA, mg/dL 138.2⫾24.6 138.6⫾24.5 137.8⫾24.7 LVEF, % 58.7⫾9.6 58.7⫾9.6 235 of MR-proANP and NT-proBNP (r⫽0.76), but correlations of NT-proBNP and cTnT with other markers were weak (rⱕ0.38; Table VII in the online-only Data Supplement). Clinical Outcomes Among patients allocated to the placebo arm of the PEACE trial, higher baseline levels of each of the 4 novel biomarker of cardiovascular stress were strongly associated with the subsequent risk of cardiovascular death or heart failure (the composite of which occurred in 114 patients), with up to approximately a doubling of the risk per each 1-SD increase in log-transformed biomarker levels (Pⱕ0.002 for each biomarker; Table 2). Risk increased across quartiles, especially the fourth quartile (Figure 1). Similar associations were seen between biomarker levels and the risk of cardiovascular death (which occurred in 67 patients) and of heart failure individually (which occurred in 56 patients; Table VIII in the online-only Data Supplement). After adjustment for traditional clinical risk predictors, estimated glomerular filtration rate, and LVEF (see Methods for a detailed list of covariates), elevated levels of MR-proANP, MR-proADM, and CT-proET-1 remained significantly associated with an increased risk of cardiovascular death or heart failure, ranging from 47% higher risk to a near doubling of the risk per each 1-SD increase in log-transformed biomarker levels (Pⱕ0.002 for each biomarker); in terms of quartile analysis, the risk was most pronounced for those patients in the top quartile, who had almost 3 times to ⬎5 times the risk seen for patients in the lowest quartile. In contrast, after multivariable adjustment, the association with copeptin was no longer significant (Table 3). As was the case for the unadjusted analyses, similar associations were seen between biomarker levels and the risk of cardiovascular death and of heart failure individually (Table VIII in the online-only Data Supplement). Compared with cardiovascular death, the associations with the less cardiovascular-specific end point of all-cause death were significant but weaker (Table IX in the online-only Data Supplement). As expected on the basis of prior work,6,26 there were nonsignificant adjusted associations between levels of novel biomarkers of cardiovascular stress and the risk of acute MI, stroke, or coronary revascularization, with the exception of MR-proANP and stroke (P⫽0.043; Table IX in the onlineonly Data Supplement). 58.8⫾9.7 MI indicates myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; SBP, systolic blood pressure; DBP, diastolic blood pressure; GFR, glomerular filtration rate; ApoB, apolipoprotein B; ApoA, apolipoprotein A; and LVEF, left ventricular ejection fraction. Data are presented as mean⫾SD for normally distributed continuous variables and n (%) for dichotomous variables. overt heart failure (Table II in the online-only Data Supplement). Characteristics of patients according to quartiles of biomarker levels are shown in Tables III through VI in the online-only Data Supplement. In general, higher levels of biomarkers of cardiovascular stress were positively associated with greater age and prevalence of hypertension and lower estimated glomerular filtration rate. LVEF was inversely associated with MR-proANP and copeptin levels but differed by only 2.0 and 1.0 absolute percentage points between the top and bottom quartiles for the 2 biomarkers, respectively. Among the novel biomarkers, the only moderately strong correlation was between MR-proADM and CT-proET-1 (r⫽0.63); the others were moderate to low (rⱕ0.44; Table VII in the online-only Data Supplement). As expected, there was a strong positive correlation between levels Table 2. Association of Biomarker Levels and Clinical Outcomes in the Placebo Arm Risk for CV Death or Heart Failure Biomarker MR-proANP HR (95% CI) per 1-SD Increase in Log-Transformed Biomarker Values P 1 2 3 4 Multiple Partial Trend 2.25 (1.89 –2.42) ⬍0.001 Referent 1.92 (0.85– 4.30) 3.10 (1.46 – 6.59) 7.30 (3.62–14.70) ⬍0.0001 ⬍0.0001 HR (95% CI) Across Quartiles P MR-proADM 1.69 (1.52–1.88) ⬍0.001 Referent 2.15 (0.88–5.28) 3.65 (1.58–8.45) 10.25 (4.71–22.33) ⬍0.0001 ⬍0.0001 CT-proET-1 1.96 (1.57–2.44) ⬍0.001 Referent 2.25 (1.14–4.45) 1.42 (0.68–2.98) 5.07 (2.72–9.44) ⬍0.0001 ⬍0.0001 Copeptin 1.30 (1.10–1.55) 0.002 Referent 0.88 (0.43–1.79) 1.23 (0.74–2.05) 2.09 (1.32–3.28) 0.0072 0.0013 CV indicates cardiovascular; HR, hazard ratio; CI, confidence interval; MR-proANP, midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. A total of 114 of the 1868 patients allocated to placebo experienced CV death or heart failure. Each biomarker was analyzed separately. In quartile analyses, “multiple partial” refers to a 3-df test for the addition of all quartiles and “trend” refers to a 1-df test for linear trend across quartiles. 236 Circulation January 17, 2012 Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 Figure 1. Cumulative incidence curves for the composite of cardiovascular death or heart failure among patients in the placebo arm of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial (n⫽1868) categorized by quartiles of midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), or copeptin. P values are for log-rank test for trend across quartiles. unbiased forward selection algorithm to create a multimarker model. The only 2 biomarkers to enter and remain in a model already containing clinical covariates were MR-proANP (adjusted HR, 1.79; 95% confidence interval [CI], 1.41–2.26; P⬍0.001) and MR-proADM (adjusted HR, 1.27; 95% CI, 1.07–1.51; P⫽0.007). The addition of MR-proANP, MR-proADM, and CTproET-1 individually to the clinical model significantly improved metrics of discrimination (Table 4). In contrast, the addition of copeptin did not improve these metrics. The addition We have previously measured NT-proBNP and cTnT in this population, and the association of those biomarkers with cardiovascular death or heart failure in a model adjusted for the aforementioned clinical covariates is shown in Table X in the online-only Data Supplement. Ranking each biomarker individually on the basis of the magnitude of risk (HR) per 1 SD gives the following order: MR-proANP (1.97), NT-proBNP (1.73), MR-proADM (1.48), CT-proET-1 (1.47), and cTnT (1.37). Given the correlation between the biomarkers and that none is established for routine use in this population, we used an Table 3. Multivariable-Adjusted Association of Biomarker Levels and Clinical Outcomes in the Placebo Arm Adjusted for Clinical Factors Adjusted Risk for CV Death or Heart Failure HR (95% CI) per 1-SD Increase in Log-Transformed Biomarker Values P 1 2 3 4 Multiple Partial Trend 1.97 (1.58 –2.46) ⬍0.001 Referent 1.60 (0.70 –3.66) 2.72 (1.24 –5.96) 4.35 (1.96 –9.62) ⬍0.0001 ⬍0.0001 MR-proADM 1.48 (1.27–1.73) ⬍0.001 Referent 1.90 (0.77–4.69) 2.45 (1.03–5.82) 5.51 (2.38–12.75) ⬍0.0001 ⬍0.0001 CT-proET-1 1.47 (1.15–1.88) 0.002 Referent 2.03 (1.03–4.04) 0.99 (0.46–2.11) 2.73 (1.41–5.27) ⬍0.001 0.01 Copeptin 1.10 (0.91–1.33) 0.32 Referent 0.77 (0.37–1.57) 1.11 (0.66–1.86) 1.41 (0.87–2.28) 0.30 0.11 Biomarker MR-proANP HR (95% CI) Across Quartiles P CV indicates cardiovascular; HR, hazard ratio; CI, confidence interval; MR-proANP, midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. Covariates in the model include standard clinical factors: age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior myocardial infarction, prior percutaneous coronary intervention or coronary artery bypass graft surgery, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to A, left ventricular ejection fraction, aspirin use, -blocker use, and lipid-lowering medication use. Each biomarker was analyzed separately in the placebo arm. In quartile analyses, “multiple partial” refers to a 3-df test for the addition of all quartiles and “trend” refers to a 1-df test for linear trend across quartiles. Sabatine et al Biomarkers of Cardiovascular Stress in Stable CAD Table 4. Impact of Biomarker Levels and Metrics of Discrimination and Reclassification in the Placebo Arm C Statistic Integrated Discrimination Index Net Reclassification Improvement Model Value P Value, % P Value P Clinical model alone 0.768 N/A N/A N/A N/A N/A ⬍0.0001 0.412 ⬍0.0001 Clinical model⫹ 0.804 0.0018 MR-proANP 3.8 Clinical model⫹ 0.788 0.0064 MR-proADM 1.9 0.0027 0.362 0.0003 Clinical model⫹ 0.779 0.23 CT-proET-1 1.2 0.047 0.205 0.039 Clinical model⫹ 0.769 0.85 copeptin 0.2 0.14 0.061 0.54 Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 MR-proANP indicates midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. Terms in the clinical model include age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior myocardial infarction, prior percutaneous coronary intervention or coronary artery bypass graft surgery, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to A, left ventricular ejection fraction, aspirin use, -blocker use, and lipid-lowering medication use. Each biomarker was analyzed separately in the placebo arm. P values are for comparison with clinical model alone. of all 3 biomarkers to the clinical model improved the C statistic from 0.768 to 0.809 and yielded an integrated discrimination improvement of 4.6% and an net reclassification improvement of 0.435 (all Pⱕ0.0005). Adding MR-proANP, MR-proADM, 237 and CT-proET-1 uniformly and significantly improved the C statistic of multivariable models already containing clinical covariates, regardless of whether NT-proBNP, cTnT, or both were also in the model; conversely, adding NT-proBNP and cTnT to a model containing clinical covariates as well as MR-proANP, MR-proADM, and CT-proET-1 did not improve the C statistic (Table XI in the online-only Data Supplement). Interaction With Trandolapril Therapy In the overall biomarker cohort, treatment with trandolapril resulted in an HR of 0.80 (95% CI, 0.61–1.05) for cardiovascular death or heart failure. Notably, however, among patients having an MR-proANP, MR-proADM, or CT-proET-1 level in the top quartile and thus at the highest risk of cardiovascular death or heart failure based on these biomarkers, trandolapril significantly reduced the risk of cardiovascular death or heart failure by 34% to 44%, whereas no benefit was observed among those with lower levels (Figure 2A). In contrast, there was no significant benefit from treatment with trandolapril among patients in the highest quartiles of either NT-proBNP or cTnT (Figure I in the online-only Data Supplement). A gradient of benefit (Pinteraction⫽0.016) with trandolapril therapy was observed in patients categorized according to whether they had elevated levels of 0 (n⫽2037), 1 (n⫽891), 2 (n⫽472), or all 3 (n⫽317) novel biomarkers that we found to be associated with cardiovascular death or heart failure in adjusted analyses (Figure 2B). When the results were dichotomized, among the 2928 patients (79% of the biomarker cohort) with ⱕ1 elevated biomarker, there was no benefit of trandolapril therapy on the risk of cardiovascular death or heart failure (HR, 1.09; Figure 2. Benefit of trandolapril on the risk of the composite of cardiovascular (CV) death or heart failure in 3717 patients from the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial categorized according to their levels of biomarkers of cardiovascular stress. A, Patients are categorized according to whether their level of each biomarker of cardiovascular stress was in the top quartile (quartile 4) or not (quartiles 1–3). The P values for interaction were 0.16, 0.02, 0.09, and 0.72 for midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), and copeptin, respectively. B, Patients are categorized by the number of biomarkers (MR-proANP, MR-proADM, and CT-proET-1) in the top quartile; the P value for interaction is 0.016. In A and B, the diamonds indicate the effect in the entire biomarker cohort, with the center indicating the point estimate and the left and right ends indicating the 95% confidence interval (CI). The squares and circles indicate the point estimate, and the horizontal lines indicate the 95% CIs for the effect in each subgroup. HR indicates hazard ratio. 238 Circulation January 17, 2012 Figure 3. Cumulative incidence curves for the composite of cardiovascular death or heart failure in 3717 patients from the Prevention of Events with Angiotensin Converting Enzyme (PEACE) trial categorized by whether they had ⱕ1 elevated biomarkers (solid lines; red indicates 1487 patients treated with placebo; blue, 1441 patients treated with trandolapril) or ⱖ2 elevated biomarkers (dashed lines; red indicates 381 patients treated with placebo; blue, 408 patients treated with trandolapril). HR indicates hazard ratio; CI, confidence interval. Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 95% CI, 0.74 –1.59), whereas among the 789 patients (21% of the biomarker cohort) with ⱖ2 elevated biomarkers, trandolapril significantly reduced the rate of cardiovascular death or heart failure (HR, 0.53; 95% CI, 0.36 – 0.80; P⫽0.002, Pinteraction⫽0.012; Figure 3). The absolute risk reduction over 6 years in this latter group was 7.5%; thus, in this subset, 14 patients would need to be treated with trandolapril for 6 years to prevent a cardiovascular death or hospitalization for heart failure. Discussion In an exploratory analysis among a large cohort of patients with stable CAD and preserved LVEF, we have demonstrated that elevated levels of 3 novel biomarkers of cardiovascular stress are independently associated with the subsequent risk of cardiovascular death and heart failure. Specifically, MRproANP, MR-proADM, and CT-proET-1 were associated with cardiovascular death or heart failure independently of clinical factors, renal function, and LVEF, ranging from 47% higher risk to a near doubling of the risk per each 1-SD increase in log-transformed biomarker levels and almost 3 times to ⬎5 times the risk for patients in the highest compared with the lowest quartile. In contrast, a fourth biomarker, copeptin, was not independently associated with the risk of cardiovascular events. Moreover, and in contrast to previous results with other biomarkers, including NTproBNP and cTnT,6,26,31 elevated levels of these 3 biomarkers identified patients in whom, despite appearing to be at low risk clinically, therapy with an ACE inhibitor resulted in a significant reduction in the risk of cardiovascular death or heart failure. We used assays for the prohormones ANP, ADM, and ET-1 because the prohormones are released in an equimolar ratio to the vasoactive hormones but have a longer half-life. When possible, we also used assays for a midregional fragment because these fragments are more stable in vivo and ex vivo than the amino- or carboxy-terminal part of the prohormone, thereby minimizing the risk of underestimation of levels as a result of early degradation of crucial epitopes at the extreme ends of the molecule.32 In studies of patients with established heart failure, elevated levels of MR-proANP, MR-proADM, and CT-proET-1 have been shown to be associated with mortality independently of clinical variables, and the biomarkers have displayed prognostic and discriminatory value that has compared favorably with BNP and/or NT-proBNP.13–15 Concordant with those observations, in our data set, we found that during the creation of a multimarker model adjusted for clinical factors, MR-proANP and MR-proADM proved to be the strongest 2 biomarkers, superior to NT-proBNP and cTnT measured with a highly sensitive assay. Because this was a clinical rather than a mechanistic study, we can only speculate as to the reasons for the superior performance, which could be related to subtle differences in the respective pathobiology underlying elevation of each of the biomarkers or could stem from more favorable analytic properties that translate into a better reflection of subclinical cardiovascular pathology. Regardless, our data are supported by and extend previous findings regarding these biomarkers and atherosclerosis reported by Schnabel and colleagues7 in several ways, including studying patients who were free of heart failure at baseline and whose LVEF was known and incorporated into all multivariable models, using patients enrolled from a much broader number of clinical centers, and examining the specific clinical events that biomarkers of cardiac stress are best suited to predict, namely cardiovascular death and heart failure, rather than a composite of death or MI. Critically, whereas other biomarker analyses have been embedded in observational cohorts, we had the benefit of studying these biomarkers in a randomized clinical trial, allowing us to examine the interaction between baseline biomarker levels and the efficacy of the randomized therapy without concern for the inherent bias in examining nonrandomly allocated therapies. Using a panel of these novel biomarkers of cardiovascular stress, we were able to identify approximately one fifth of enrolled patients with stable CAD in whom ACE inhibitor therapy nearly halved the risk of cardiovascular death or heart failure. Our findings are conceptually analogous to the results of Richards and colleagues,33,34 who showed that elevated levels of biomarkers of cardiovascular stress identified patients with ischemic left ventricular dysfunction who benefited from -blockade. Current practice guidelines for the management of patients with stable CAD recommend ACE inhibitor therapy in those patients with an LVEF ⬍40%; in addition, in part on the basis of data from the Heart Outcomes Prevention Evaluation (HOPE) trial, ACE inhibitors are recommended for patients who are relatively high risk and/or have another compelling clinical indication (eg, hypertension, diabetes mellitus, or chronic kidney disease).35 In contrast, for lower-risk patients like those in the PEACE trial, in which the event rate in the placebo arm was lower than the event rate in the ACE inhibitor arm from the HOPE trial, the guidelines note that it is reasonable but not recommended to use ACE inhibitors when cardiovascular risk factors are well controlled and revascularization has been performed. Our data now support the hypothesis that within this very large population of patients who appear to be of lower risk Sabatine et al Biomarkers of Cardiovascular Stress in Stable CAD Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 clinically, biomarkers of cardiovascular stress levels may be useful to help guide such decision making. Although additional prospective analyses will need to be done if these biomarkers become available for routine clinical use in the United States, targeting long-term drug therapy based on a panel of biomarkers should be cost effective. Several potential limitations of our study deserve consideration. The PEACE clinical trial population, which was predominantly a white, male population ⬎50 years of age, is not representative of the general population. However, the clinical and laboratory characteristics of patients in this study are typical of patients with stable coronary disease, and a high proportion of patients were treated with -blockers and lipid-lowering therapy. Blood samples were obtained from only a subgroup of the participants in the overall PEACE trial, but there were no clinically relevant differences between patients who did and did not participate in the biomarker substudy. Banked biosamples were used, but any sample degradation should be random with respect to cardiovascular outcomes, and thus any resultant misclassification should only bias toward the null hypothesis. The formation of the multimarker score for interaction with therapy should be considered exploratory, and the optimal combination of biomarkers and their cut points merits validation in additional populations. Heart failure events were not a component of the prespecified primary outcome in the original trial design but are a well-established outcome predicted by biomarkers of cardiac stress and prevented by ACE inhibitors in other populations.6,19,20,26 Conclusion In apparently low-risk patients with stable CAD and preserved LVEF, elevated levels of novel biomarkers reflecting cardiovascular stress may be useful both to identify patients who are at higher risk of cardiovascular death and heart failure and to select patients who derive a significant benefit from ACE inhibitor therapy. Sources of Funding The PEACE trial was supported by a contract from the National Heart, Lung, and Blood Institute (NHLBI; N01 HC65149) and by Knoll Pharmaceuticals and Abbott Laboratories, which also provided the study medication. Dr Sabatine was supported in part by grant R01 HL094390 from the NHLBI. Reagent for measurement of MR-proANP, MR-proADM, CT-proET-1, and copeptin were provided by B.R.A.H.M.S. GmbH (Henningsdorf, Germany). The NHLBI, Knoll Pharmaceuticals, Abbott Laboratories, and B.R.A.H.M.S. GmbH had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. Disclosures Drs Sabatine, Morrow, and Braunwald and S. Sloan are members of the TIMI Study Group, which has received research grant support from Accumetrics, Amgen, AstraZeneca, Beckman Coulter, BG Medicine, B.R.A.H.M.S. GmbH, Bristol-Myers Squibb, CV Therapeutics, Daiichi Sankyo Co Ltd, diaDexus, Eli Lilly and Co, Genentech, GlaxoSmithKline, Integrated Therapeutics, Johnson & Johnson, Merck and Co, Nanosphere, Novartis Pharmaceuticals, Nuvelo, Ortho-Clinical Diagnostics, Pfizer, Roche Diagnostics, Sanofi-aventis, Siemens, and Singulex. Dr Sabatine reports receiving honoraria for educational presentations from Bristol-Myers Squibb and diaDexus, as well as remuneration for consulting from AstraZeneca, Bristol-Myers Squibb/ Sanofi-aventis Joint Venture, Daiichi-Sankyo/Lilly Partnership, Sanofi- 239 aventis, and Singulex. Dr Morrow reports receiving honoraria for educational presentations from Eli Lilly; remuneration for consulting from Beckman-Coulter, Boehringer Ingelheim, Cardiokinetix, Critical Diagnostics, Gilead, Instrumentation Laboratory, Ikaria, Menarini, Merck, OrthoClinical Diagnostics, Servier, Roche Diagnostics, and Siemens; and remuneration from AstraZeneca for adjudication as a member of a Clinical Events Committee. Dr de Lemos reports receiving grant support from Roche and Alere, Inc (formerly Biosite) and consulting income from Alere, Johnson & Johnson Roche Diagnostics, and Tethys Biomedical. Dr Omland reports receiving speakers’ honoraria from Roche Diagnostics and Abbott Laboratories. Dr Jarolim reports receiving research support from Amgen, Beckman-Coulter, Ortho Clinical Diagnostics, Roche Diagnostics, and Siemens Healthcare Diagnostics; honoraria for educational presentations from Ortho Clinical Diagnostics; and consulting fees from T2 Biosystems. Dr Pfeffer reports receiving grant support from Amgen, Novartis, and Sanofi-aventis, as well as consulting fees from Amgen, Anthera, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cerenis, Eleven Biotherapeutics, GlaxoSmithKline, Hamilton Health Sciences, Karo Bio, Novartis, Roche, Salutria, Sanofi Aventis, Servier, and University of Oxford. Dr Pfeffer is a coinventor on a patent that Brigham and Women’s Hospital has for the use of inhibitors of the renin-angiotensin system in selected survivors of MI. His share of the licensing agreements with Novartis and Boehringer, which are irrevocably transferred to charity, are not linked to sales. Dr Braunwald reports receiving remuneration for symposia and/or consulting from Amorcyte, CardioRentis, CVRx, Daiichi Sankyo, Eli Lilly, Genzyme, Medicines Co, and Merck & Co. The other authors report no conflicts. References 1. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358: 2148 –2159. 2. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655– 663. 3. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlov J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–2116. 4. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, Hall C, Cannon CP, Braunwald E. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014 –1021. 5. Morrow DA, de Lemos JA, Blazing MA, Sabatine MS, Murphy SA, Jarolim P, White HD, Fox KA, Califf RM, Braunwald E. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA. 2005;294:2866 –2871. 6. Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, Landaas S, Rouleau JL, Domanski MJ, Hall C, Pfeffer MA, Braunwald E. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol. 2007;50: 205–214. 7. Schnabel RB, Schulz A, Messow CM, Lubos E, Wild PS, Zeller T, Sinning CR, Rupprecht HJ, Bickel C, Peetz D, Cambien F, Kempf T, Wollert KC, Benjamin EJ, Lackner KJ, Munzel TF, Tiret L, Vasan RS, Blankenberg S. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J. 2010;31:3024 –3031. 8. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–328. 9. Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJ. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004; 103:179 –201. 10. Jougasaki M, Stevens TL, Borgeson DD, Luchner A, Redfield MM, Burnett JC Jr. Adrenomedullin in experimental congestive heart failure: cardiorenal activation. Am J Physiol. 1997;273:R1392–R1399. 11. Spieker LE, Noll G, Ruschitzka FT, Luscher TF. Endothelin receptor antagonists in congestive heart failure: a new therapeutic principle for the future? J Am Coll Cardiol. 2001;37:1493–1505. 12. Finley JJ 4th, Konstam MA, Udelson JE. Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation. 2008;118:410 – 421. 13. Moertl D, Berger R, Struck J, Gleiss A, Hammer A, Morgenthaler NG, Bergmann A, Huelsmann M, Pacher R. Comparison of midregional proatrial and B-type natriuretic peptides in chronic heart failure: influencing 240 14. 15. 16. 17. 18. Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 19. 20. 21. 22. 23. 24. 25. Circulation January 17, 2012 factors, detection of left ventricular systolic dysfunction, and prediction of death. J Am Coll Cardiol. 2009;53:1783–1790. von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, Rozentryt P, Vassanelli C, Struck J, Banasiak W, Ponikowski P, Kremastinos D, Bergmann A, Morgenthaler NG, Anker SD. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484 – 491. Jankowska EA, Filippatos GS, von Haehling S, Papassotiriou J, Morgenthaler NG, Cicoira M, Schefold JC, Rozentryt P, Ponikowska B, Doehner W, Banasiak W, Hartmann O, Struck J, Bergmann A, Anker SD, Ponikowski P. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1. PLoS One. 2011;6:e14506. Stoiser B, Mortl D, Hulsmann M, Berger R, Struck J, Morgenthaler NG, Bergmann A, Pacher R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006;36:771–778. Garg R, Yusuf S. Overview of randomized trials of angiotensinconverting enzyme inhibitors on mortality and morbidity in patients with heart failure: Collaborative Group on ACE Inhibitor Trials. JAMA. 1995; 273:1450 –1456. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97:2202–2212. Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–153. European Trial on Reduction of Cardiac Events With Perindopril in Stable Coronary Artery Disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–788. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Rouleau JL; PEACE Trial Investigators. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058 –2068. Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin Chem. 2004;50:234 –236. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005;51:1823–1829. Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A. Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin Chem. 2006;52:1144–1151. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–119. 26. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538 –2547. 27. Guilford JP. Fundamental Statistics in Psychology and Education. New York, NY: McGraw Hill; 1956. 28. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–172. 29. Harrell FE. Harrell Miscellaneous. R Graphical Manual. December 26, 2008. http://biostat.mc.vanderbilt.edu/s/Hmisc. 2009. Accessed December 16, 2010. 30. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21. 31. Sabatine MS, Morrow DA, Jablonski KA, Rice MM, Warnica JW, Domanski MJ, Hsia J, Gersh BJ, Rifai N, Ridker PM, Pfeffer MA, Braunwald E. Prognostic significance of the Centers for Disease Control/ American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. Circulation. 2007;115:1528 –1536. 32. Ala-Kopsala M, Magga J, Peuhkurinen K, Leipala J, Ruskoaho H, Leppaluoto J, Vuolteenaho O. Molecular heterogeneity has a major impact on the measurement of circulating N-terminal fragments of A- and B-type natriuretic peptides. Clin Chem. 2004;50:1576 –1588. 33. Richards AM, Doughty R, Nicholls MG, Macmahon S, Ikram H, Sharpe N, Espiner EA, Frampton C, Yandle TG. Neurohumoral prediction of benefit from carvedilol in ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. Circulation. 1999;99: 786 –792. 34. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37:1781–1787. 35. Fraker TD Jr, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, Ferguson TB Jr, Fihn SD, Fraker TD Jr, Gardin JM, O’Rourke RA, Williams SV, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Page RL, Riegel B, Tarkington LG, Yancy CW. 2007 Chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. Circulation. 2007;116:2762–2772. CLINICAL PERSPECTIVE The benefit of angiotensin-converting enzyme inhibitors in low-risk patients with stable coronary artery disease without heart failure remains controversial, and current practice guidelines note that it is reasonable but not recommended to use angiotensin-converting enzyme inhibitors when cardiovascular risk factors are well controlled and revascularization has been performed. We now demonstrate that elevated levels of 3 novel biomarkers of cardiovascular stress, midregional pro-atrial natriuretic peptide, midregional pro-adrenomedullin, and C-terminal pro-endothelin-1, are associated with the subsequent risk of cardiovascular death and heart failure independently of clinical factors (adjusted hazard ratios per 1-SD increase of 1.97, 1.48, and 1.47, respectively; Pⱕ0.002 for each biomarker). Furthermore, elevated levels of these biomarkers identified patients in whom therapy with an angiotensin-converting enzyme inhibitor resulted in a significant reduction in the risk of cardiovascular death or heart failure. Specifically, trandolapril significantly reduced the risk of cardiovascular death or heart failure in patients who had elevated levels of ⱖ2 biomarkers (hazard ratio, 0.53; 95% confidence interval, 0.36 – 0.80), whereas there was no benefit in patients with elevated levels of 0 or 1 biomarker (hazard ratio, 1.09; 95% confidence interval, 0.74 –1.59; Pinteraction⫽0.012). Thus, in patients with stable coronary artery disease and preserved left ventricular ejection fraction, elevated levels of novel biomarkers of cardiovascular stress identify patients who are at higher risk of cardiovascular death and heart failure and may be useful to select patients who derive significant benefit from angiotensin-converting enzyme inhibitor therapy. Evaluation of Multiple Biomarkers of Cardiovascular Stress for Risk Prediction and Guiding Medical Therapy in Patients With Stable Coronary Disease Marc S. Sabatine, David A. Morrow, James A. de Lemos, Torbjorn Omland, Sarah Sloan, Petr Jarolim, Scott D. Solomon, Marc A. Pfeffer and Eugene Braunwald Downloaded from http://circ.ahajournals.org/ by guest on June 16, 2017 Circulation. 2012;125:233-240; originally published online December 16, 2011; doi: 10.1161/CIRCULATIONAHA.111.063842 Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circ.ahajournals.org/content/125/2/233 Data Supplement (unedited) at: http://circ.ahajournals.org/content/suppl/2011/12/16/CIRCULATIONAHA.111.063842.DC1 http://circ.ahajournals.org/content/suppl/2013/10/14/CIRCULATIONAHA.111.063842.DC2 http://circ.ahajournals.org/content/suppl/2013/10/17/CIRCULATIONAHA.111.063842.DC3 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/ Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD SUPPLEMENTAL MATERIAL 1 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Methods Patient population In the overall PEACE trial, a total of 8290 patients with documented stable coronary artery disease and preserved left ventricular ejection fraction were randomized at 187 clinical centers in the United States, Canada, and Europe to trandolapril or placebo from November 1996 through June 2000. Subjects were followed for a median of 4.8 years. As part of the study protocol, a sample of venous blood was obtained in EDTA-treated tubes at the time of enrollment. Participation in the biomarker substudy was at the discretion of each clinical center and there were no clinically relevant differences between patients included in the substudy and the overall trial population (Supplemental Table 1). The plasma component was aspirated and frozen at -20 oC at individual centers. Within 3 months after collection, plasma samples were shipped on dry ice to a central laboratory for storage at -70 oC or colder until thawed for determination of biomarkers. 2 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Biomarker analyses Levels of MR-proANP, MR-proADM, CT-proET-1, and copeptin were determined using the TimeResolved-Amplified-Cryptate-Emission (TRACE) technology on the Kryptor Compact analyzers (B.R.A.H.M.S. GmbH, Henningsdorf, Germany). NT-proBNP levels were determined with an electrochemiluminescence immunoassay on a Modular platform (Roche Diagnostics, Bsel, Switzerland). Cardiac troponin T (cTnT) levels were measured with a highly sensitive assay on an autoanalyzer (cobas e 411, Roche Diagnostics, Penzberg, Germany). Outcomes All clinical events were confirmed by a review of medical records. Cardiovascular death, MI, and stroke underwent blinded review by an outcomes committee. Heart failure was classified by centrally trained local staff and confirmed by staff at the coordinating center through a review of hospital records. For an event to be classified as heart failure, hospitalization with a primary cause of heart failure was required. Statistical analyses As described by Pencina and colleagues, the integrated discrimination improvement (IDI) is a method to quantify the differences in the probabilities for events and non-events based on the addition of the new biomarkers to the model and can be viewed as difference between the improvement in average sensitivity and any potential increase in average “one minus specificity”. The net re-classification improvement (NRI) is the probability that patients are appropriately assigned to a higher or lower risk. We calculated NRI using Harrell’s technique, as programmed in R, which evaluates the change in the estimated risk as a continuous variable and therefore is not dependent on a priori categorization. 3 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 1. Baseline Characteristics of Patients in the PEACE Trial Baseline Characteristic All patients (n=8290) Patients in the biomarker substudy (n=3717) Patients not in the biomarker substudy (n=4573) 64.3 8.2 64.1 8.2 64.5 8.2 Female sex 1494 (18.0) 701 (18.9) 793 (17.3) Weight, kg 83.4 15.7 83.9 15.7 83.1 15.7 Hypertension 3764 (45.4) 1658 (44.6) 2106 (46.1) Diabetes 1380 (16.7) 602 (16.2) 778 (17.0) Current smoker 1177 (14.2) 564 (15.2) 613 (13.4) Prior MI 4552 (55.0) 2087 (56.2) 2465 (54.0) Prior PCI or CABG 5971 (72.1) 2697 (72.6) 3274 (71.7) Aspirin 7519 (90.7) 3389 (91.2) 4130 (90.4) Beta-blocker 4965 (59.9) 2303 (62.0) 2662 (58.3) Lipid-lowering therapy 5801 (70.0) 2667 (71.8) 3134 (68.6) SBP, mmHg 133.4 16.6 133.4 16.8 133.5 16.4 DBP, mmHg 77.7 9.7 78.1 10.0 77.4 9.6 GFR, ml/min/1.73 m2 77.6 19.1 77.9 19.4 77.3 18.8 ApoB, mg/dl 107.2 23.1 107.2 23.1 106.8 26.3 ApoA, mg/dl 138.2 24.6 138.2 24.6 133.2 21.4 58.2 9.4 58.7 9.6 57.7 9.1 Age, y LVEF, % Data presented are mean SD for normally distributed continuous variables and n (%) for dichotomous variables. CABG = coronary artery bypass grafting; DBP = diastolic blood pressure; GFR = glomerular filtration rate; LVEF = left ventricular ejection fraction; MI = myocardial infarction; PCI = percutaneous coronary intervention; SBP = systolic blood pressure. 4 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 2. Biomarker Assay Specifications Biomarker MR-proANP MR-proADM CT-proET-1 Copeptin pmol/L nmol/L pmol/L pmol/L 2.1 0.05 3 5 1000 10 500 500 Assay specifications Units of measurement Detection limit Direct measurement upper limit Coefficient of variation 20-80 pmol/L: <8% 0.2-0.5 nmol/L: <20% 40-80 pmol/L: <10% 15-20 pmol/L: <15% >80 pmol/L: <5% 0.5-2.0 nmol/L: <11% >80 pmol/L: <6% 20-50 pmol/L: <13% 2-6 nmol/L: <10% >50 pmol/L: <8% >6 nmol/L: <6% Values in Healthy Population* Median 46.1 0.39 45.5 5.0 97.5 percentile 163.9 0.52 73.9 17.4 Median (25th-75th %ile) 90.45 (63.68-128.3) 0.5301 (0.4486-0.6353) 47.82 (39.04-57.02) 6.467 (0-10.67) Mean±SD of log transformed values† 4.627±0.460 2.356±0.016 4.036±0.301 2.765±0.422 206 (127-322) 0.75 (0.58-0.97) 81 (64-105) 13.8 (7.6-24.2) Values in PEACE Values in Heart Failure Population1 Median (25th-75th %ile) * Data are from the package inserts for each assay. Raw values were natural log transformed. For MR-proADM, as the raw values were <1, a constant (10) was added to all values prior to log transformation. † 5 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 3. Baseline Characteristics by MR-proANP Quartiles Quartiles of MR-proANP (pmol/L) Baseline Characteristic 63.68 63.69-90.45 90.46-128.3 128.4 (n=930) (n=929) (n=930) (n=928) 59.5 6.8 62.1 7.3 65.3 7.5 69.6 7.4 <0.001 Female sex 140 (15.1) 160 (17.2) 193 (20.8) 208 (22.4) <0.001 Weight, kg 87.5 16.0 84.8 15.0 83.1 15.7 80.4 15.1 <0.001 Hypertension 363 (39.0) 376 (40.5) 447 (48.1) 472 (50.9) <0.001 Diabetes 179 (19.2) 152 (16.4) 135 (14.5) 136 (14.7) 0.004 Current smoker 228 (24.5) 165 (17.8) 95 (10.2) 76 (8.2) <0.001 Prior MI 519 (55.8) 517 (55.7) 510 (54.9) 541 (58.3) 0.36 Prior PCI or CABG 661 (71.1) 676 (72.8) 669 (72.0) 691 (74.5) 0.15 Aspirin 865 (93.0) 865 (93.1) 842 (90.7) 817 (88.0) <0.001 Beta-blocker 419 (45.1) 531 (57.2) 646 (69.6) 707 (76.2) <0.001 Lipid-lowering therapy 681 (73.3) 692 (74.5) 661 (71.2) 633 (68.2) 0.005 SBP, mmHg 130.7 14.7 131.6 16.2 133.9 16.9 137.3 18.5 <0.001 DBP, mmHg 80.0 9.8 78.2 10.1 77.6 9.6 76.7 10.1 <0.001 GFR, ml/min/1.73 m2 84.8 20.6 80.6 18.6 76.1 17.2 70.2 17.9 <0.001 ApoB, mg/dl 109.8 23.4 108.2 23.8 106.0 22.3 104.7 22.4 <0.001 ApoA, mg/dl 137.2 23.4 137.3 23.6 139.3 25.0 139.2 26.3 0.12 59.5 9.6 59.3 9.6 58.7 9.8 57.5 9.4 <0.001 Age, y LVEF, % P value Data presented are mean SD for normally distributed continuous variables and n (%) for dichotomous variables. BMI = body mass index; CABG = coronary artery bypass grafting; DBP = diastolic blood pressure; GFR = glomerular filtration rate; LVEF = left ventricular ejection fraction; MI = myocardial infarction; PCI = percutaneous coronary intervention; SBP = systolic blood pressure. 6 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 4. Baseline Characteristics by MR-proADM Quartiles Quartiles of MR-proADM (nmol/L) Baseline Characteristic 0.4486 0.4487-0.5301 0.5302-0.6353 0.6354 (n=930) (n=930) (n=928) (n=929) Age, y 60.1 Female sex 148 (15.9) 125 (13.4) Weight, kg 80.6 83.8 Hypertension 377 (40.5) 350 (37.6) Diabetes 148 (15.9) Current smoker P value 7.6 <0.001 173 (18.6) 255 (27.4) <0.001 85.1 86.3 16.8 <0.001 435 (46.9) 496 (53.4) <0.001 133 (14.3) 139 (15.0) 182 (19.6) 0.03 145 (15.6) 130 (14.0) 160 (17.2) 129 (13.9) 0.75 Prior MI 506 (54.4) 534 (57.4) 526 (56.7) 521 (56.1) 0.54 Prior PCI or CABG 705 (75.8) 688 (74.0) 649 (69.9) 655 (70.6) 0.003 Aspirin 863 (92.8) 866 (93.1) 840 (90.6) 820 (88.4) <0.001 Beta-blocker 525 (56.5) 554 (59.6) 601 (64.8) 623 (67.1) <0.001 Lipid-lowering therapy 713 (76.8) 689 (74.1) 649 (70.1) 616 (66.4) <0.001 7.0 14.5 62.5 7.6 14.6 65.2 7.8 16.0 68.7 131.0 16.3 134.5 16.9 136.6 17.4 <0.001 10.2 77.9 9.8 78.5 9.6 77.2 10.6 0.01 84.9 20.0 81.2 18.5 77.4 17.2 68.2 17.6 <0.001 ApoB, mg/dl 106.9 21.7 106.2 22.2 108.5 24.8 107.2 23.4 0.64 ApoA, mg/dl 138.1 24.5 136.7 23.3 138.4 24.4 139.7 26.1 0.08 58.9 9.6 58.6 9.4 59.0 9.9 58.5 9.7 0.39 SBP, mmHg 131.4 DBP, mmHg 78.8 GFR, ml/min/1.73m2 LVEF, % 16.1 See footnote to Supplemental Table 3 for details. 7 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 5. Baseline Characteristics by CT-proET-1 Quartiles Quartiles of CT-proET-1 (pmol/L) Baseline Characteristic 39.04 39.05-47.82 47.83-57.02 57.03 (n=930) (n=929) (n=929) (n=929) 62.0 7.6 63.1 8.0 64.6 8.2 66.8 8.0 <0.001 Female sex 191 (20.5) 155 (16.7) 145 (15.6) 210 (22.6) 0.37 Weight, kg 82.3 15.5 84.3 15.4 84.4 15.4 84.8 16.1 0.001 Hypertension 384 (41.3) 385 (41.4) 403 (43.4) 486 (52.3) <0.001 Diabetes 162 (17.4) 125 (13.5) 153 (16.5) 162 (17.4) 0.57 Current smoker 127 (13.7) 132 (14.2) 140 (15.1) 165 (17.8) 0.01 Prior MI 493 (53.0) 551 (59.3) 516 (55.6) 527 (56.7) 0.31 Prior PCI or CABG 701 (75.4) 685 (73.7) 647 (69.7) 664 (71.5) 0.02 Aspirin 859 (92.4) 854 (91.9) 852 (91.9) 824 (88.7) 0.008 Beta-blocker 557 (59.9) 567 (61.0) 573 (61.8) 606 (65.2) 0.02 Lipid-lowering therapy 699 (75.2) 676 (72.8) 650 (70.1) 642 (69.1) 0.001 SBP, mmHg 131.1 16.1 132.9 16.5 133.4 17.2 136.0 17.2 <0.001 DBP, mmHg 77.8 9.7 78.7 10.1 78.4 9.6 77.7 10.4 0.61 GFR, ml/min/1.73 m2 84.6 21.2 80.6 17.3 76.9 17.9 69.6 17.6 <0.001 ApoB, mg/dl 106.0 22.6 107.0 22.0 107.0 23.3 108.7 24.3 0.04 ApoA, mg/dl 139.6 25.3 139.1 24.5 137.3 24.7 136.9 23.8 0.01 58.7 9.5 59.2 9.7 58.8 9.7 58.3 9.7 0.21 Age, y LVEF, % See footnote to Supplemental Table 3 for details. 8 P value Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 6. Baseline Characteristics by Copeptin Quartiles Quartiles of Copeptin (pmol/L) Baseline Characteristic 0 5-6.467 6.468-10.67 10.68 (n=1382) (n=477) (n=929) (n=929) 63.7 7.9 63.7 8.3 63.4 8.2 65.7 8.3 <0.001 Female sex 342 (24.8) 89 (18.7) 143 (15.4) 127 (13.7) <0.001 Weight, kg 82.3 15.2 84.6 15.9 84.6 15.9 85.4 15.7 <0.001 Hypertension 629 (44.1) 218 (45.7) 380 (40.9) 451 (48.6) 0.20 Diabetes 205 (14.8) 78 (16.4) 135 (14.5) 184 (19.8) 0.01 Current smoker 183 (13.2) 64 (13.4) 176 (19.0) 141 (15.2) 0.02 Prior MI 754 (54.6) 268 (56.2) 539 (58.0) 526 (56.7) 0.18 Prior PCI or CABG 1011 (73.2) 338 (70.9) 684 (73.6) 664 (71.6) 0.60 Aspirin 1273 (92.1) 439 (92.0) 853 (91.9) 824 (88.8) 0.02 Beta-blocker 849 (61.4) 292 (61.2) 583 (62.8) 579 (62.4) 0.52 Lipid-lowering therapy 1006 (72.9) 348 (73.0) 666 (71.8) 647 (69.7) 0.11 SBP, mmHg 132.7 16.9 134.3 17.0 132.0 16.4 135.3 16.9 0.01 DBP, mmHg 77.9 9.8 78.9 9.9 78.2 10.1 78.0 10.2 0.99 GFR, ml/min/1.73 m2 80.0 18.8 78.9 18.9 78.6 20.0 73.7 19.3 <0.001 ApoB, mg/dl 107.0 23.1 108.1 24.0 105.8 21.7 108.4 23.8 0.67 ApoA, mg/dl 140.4 25.7 138.2 23.0 137.6 24.1 135.7 23.9 <0.001 59.3 9.7 58.4 9.1 58.6 9.6 58.3 9.7 0.01 Age, y LVEF, % See footnote to Supplemental Table 3 for details. 9 P value Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 7. Correlation between biomarkers MR-proANP MR-proADM CT-proET-1 Copeptin NT-proBNP cTnT MR-proANP ... 0.44 0.30 0.12 0.76 0.37 MR-proADM <0.001 ... 0.63 0.23 0.38 0.30 CT-proET-1 <0.001 <0.001 ... 0.21 0.25 0.22 Copeptin <0.001 <0.001 <0.001 ... 0.10 0.20 NT-proBNP <0.001 <0.001 <0.001 <0.001 ... 0.35 cTnT <0.001 <0.001 <0.001 <0.001 <0.001 ... Values above and to the right of the diagonal line of identity are Spearman’s correlation coefficients, values to the left and below are the corresponding P values. 10 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 8. Association of biomarker levels and individual components of primary outcome in the placebo arm CV Death Biomarker Heart Failure Model HR (95% CI) P value HR (95% CI) P value Unadjusted 2.12 (1.69-2.67) <0.001 2.52 (1.96-3.23) <0.001 Adjusted 1.76 (1.31-2.37) <0.001 2.35 (1.72-3.20) <0.001 Unadjusted 1.74 (1.52-1.99) <0.001 1.68 (1.44-1.96) <0.001 Adjusted 1.56 (1.27-1.90) <0.001 1.47 (1.17-1.84) 0.001 Unadjusted 2.07 (1.55-2.77) <0.001 2.13 (1.55-2.93) <0.001 Adjusted 1.52 (1.10-2.10) 0.012 1.70 (1.20-2.42) 0.003 Unadjusted 1.29 (1.03-1.62) 0.026 1.23 (0.96-1.58) 0.10 Adjusted 1.03 (0.80-1.32) 0.83 1.08 (0.83-1.40) 0.57 MR-proANP MR-proADM CT-proET-1 Copeptin Of the 1868 patients allocated to placebo, 67 experienced cardiovascular death and 56 heart failure. HR is per 1-SD increase in the log-transformed value of the biomarker. Each biomarker was analyzed separately. 11 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 9. Association of biomarker levels and other outcomes in the placebo arm All-Cause Death Biomarker Acute MI Acute Stroke Revascularization Model HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value Unadjusted 1.59 (1.37-1.86) <0.001 1.10 (0.91-1.33) 0.31 1.50 (1.11-2.03) 0.008 0.96 (0.87-1.06) 0.44 Adjusted 1.30 (1.06-1.58) 0.011 1.07 (0.84-1.35) 0.59 1.51 (1.01-2.24) 0.043 0.96 (0.84-1.10) 0.55 Unadjusted 1.57 (1.41-1.74) <0.001 1.27 (1.08-1.50) 0.003 1.12 (0.84-1.51) 0.44 0.98 (0.88-1.09) 0.72 Adjusted 1.41 (1.22-1.64) <0.001 1.19 (0.96-1.48) 0.11 0.91 (0.65-1.27) 0.58 0.95 (0.84-1.08) 0.43 Unadjusted 1.56 (1.29-1.89) <0.001 1.25 (1.00-1.55) 0.046 0.94 (0.69-1.27) 0.69 0.92 (0.83-1.02) 0.12 Adjusted 1.29 (1.05-1.59) 0.016 1.12 (0.89-1.40) 0.35 0.84 (0.63-1.12) 0.23 0.91 (0.81-1.01) 0.08 Unadjusted 1.23 (1.06-1.44) 0.007 1.11 (0.92-1.33) 0.27 0.92 (0.67-1.28) 0.64 1.00 (0.90-1.11) 0.96 Adjusted 1.06 (0.90-1.26) 0.48 1.01 (0.83-1.24) 0.88 0.84 (0.60-1.17) 0.30 0.98 (0.88-1.10) 0.78 MR-proANP MR-proADM CT-proET-1 Copeptin Of the 1868 patients allocated to placebo, 153 died from any cause, 109 had an acute MI, 40 had an acute stroke, and 372 underwent coronary revascularization. HR is per 1-SD increase in the log-transformed value of the biomarker. Each biomarker was analyzed separately. 12 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 10. Adjusted multivariable, multimarker models in the placebo arm Model 3 Model 1 Model 2 Clinical factors + NT-proBNP Clinical factors + cTnT Model 4 Clinical factors + NT-proBNP & cTnT Model 6 Model 5 Clinical factors + Clinical factors + Clinical factors + NT-proBNP, cTnT, NT-proBNP, cTnT, NT-proBNP, cTnT, MR-proANP, & & MR-proANP & MR-proADM MR-proADM HR HR HR HR HR HR P value P value P value P value P value P value (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) NT-proBNP 1.73 <0.001 (1.42-2.12) n/a n/a 1.68 1.22 <0.001 (1.35-2.08) (0.89-1.68) 1.37 1.21 <0.001 (1.18-1.60) (1.02-1.44) cTnT n/a n/a MR-proANP n/a n/a n/a n/a MR-proADM n/a n/a n/a n/a 0.21 1.58 1.22 <0.001 (1.27-1.97) (0.89-1.67) 0.22 0.026 1.22 (1.02-1.45) 0.027 1.15 (0.96-1.38) 0.14 1.15 (0.96-1.38) 0.14 n/a n/a 1.59 (1.14-2.22) 0.007 n/a n/a 1.50 (1.06-2.12) 0.021 n/a n/a n/a n/a 1.25 (1.04-1.50) 0.017 1.20 (0.99-1.44) 0.06 Each model contains the standard clinical factors used in prior models (age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior MI, prior PCI or CABG, systolic blood pressure, estimated GFR, ratio of apoB/apoA, LVEF, aspirin use, beta-blocker use, lipid-lowering medication use) as well as those biomarkers shown with data. HR is for the risk per 1-SD of log-transformed biomarker. 13 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Table 11. C-statistics in adjusted multimarker models in the placebo arm Without MR-proANP, MR-proADM, CT-proET-1 Clinical model alone Clinical + NT-proBNP Clinical + cTnT Clinical + NT-proBNP + cTnT With MR-proANP, MR-proADM, CT-proET-1 0.768 0.809 P=0.0005 0.793 0.810 P=0.02 P=0.03 P=0.82 0.783 0.810 P=0.03 P=0.49 0.797 0.810 P=0.0004 P=0.63 P=0.007 P=0.03 Each model contains standard clinical factors (listed in the Methods and in the footnote to Table 3 in the main paper). P values to the right of c-statistics represent the significance of adding MR-proANP, MR-proADM, and CT-proET-1 to the model. P values below the c-statistics represent the significance of adding NT-proBNP, cTnT or both to the model. 14 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Figure 1 HR 95% CI 0.80 0.61-1.05 Quartiles 1-3 0.93 0.61-1.41 Quartile 4 0.74 0.51-1.08 Quartiles 1-3 0.86 0.57-1.29 Quartile 4 0.75 0.52-1.10 All Patients NT-proBNP cTnT 0.2 0.5 1 2 HR (95% CI) f or ef f ect of trandolapril on CV death or heart f ailure 15 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental Figure Legend Supplemental Figure. Benefit of trandolapril on the risk of the composite of cardiovascular death or heart failure in 3717 patients from the PEACE trial, categorized as to their levels of biomarkers of cardiovascular stress. Patients are categorized as to whether their level of each biomarker was in the top quartile (quartile 4) or not (quartiles 1-3). The P values for interaction were 0.43 and 0.63 for NT-proBNP and cTnT, respectively. The diamond indicate the effect in the entire biomarker cohort, with the center indicating the point estimate and the left and right ends indicating the 95% CI. The squares and circles indicate the point estimate and the horizontal lines indicate the 95% CIs for the effect in each subgroup. 16 Sabatine: Biomarkers of Cardiovascular Stress in Stable CAD Supplemental References 1. Masson S, Latini R, Carbonieri E, Moretti L, Rossi MG, Ciricugno S, Milani V, Marchioli R, Struck J, Bergmann A, Maggioni AP, Tognoni G, Tavazzi L. The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSIHF) trial. Eur J Heart Fail. 2010;12:338-347. 17 58 새로운 바이오마커가 안정형 협심증 환자에서 심혈관계 위험도와 ACE 저해제의 효과를 예측할 수 있다 강 현 재 교수 서울대학교병원 순환기내과 Summary 배경 혈중 바이오마커는 심혈관계 스트레스를 평가하고, 위 때, 심혈관계 위험도 예측 모델의 예측력을 증가시켰다. 험도 예측에 따른 치료 선택에 도움을 줄 수 있다. 그리고 trandolapril의 투여는 바이오마커가 2가지 이 상 증가(가장 높은 사분위 군에 포함된 경우)된 환자에 방법 및 결과 서 심혈관계 사망이나 심부전으로 인한 입원의 위험도 PEACE(Prevention of Events With Angiotensin 를 유의하게 낮추었으나(HR, 0.53; 95% CI, 0.36–0.80), Converting Enzyme) 연구에 참여한 좌심실 수축기 기 바이오마커가 1개 이하로 증가된 소견을 보인 환자에 능이 유지되는 3,717명의 안정형 협심증 환자를 대상 서는 그렇지 않았다(HR, 1.09; 95% CI, 0.74–1.59; P for 으로 midregional pro-atrial natriuretic peptide(MR- interaction=0.012). proANP), midregional pro-adrenomedullin(MRproADM), C-terminal pro-endothelin-1(CT-proET-1), 결론 and copeptin의 4가지 바이오마커를 측정하였다. 좌심실 수축기 기능이 유지되는 안정형 협심증 환자 임상적인 심혈관계 위험도와 좌심실 수축기 기능을 보 에서 심혈관계 스트레스를 반영하는 새로운 바이오마 정하였을 때, MR-proANP, MR-proADM, CT-proET-1 커의 증가가 심혈관계 사망 또는 심부전의 고위험군을 의 증가가 심혈관계 사망 또는 심부전의 위험과 독립적 구분하는 데 도움을 줄 수 있고, 안지오텐신 전환효소 인 연관성을 보였다(log 변환한 표준편차가 1 증가할 때 (angiotensin-converting enzyme, ACE) 저해제 치료로 마다 HR이 각각 1.97, 1.48, 1.47씩 증가됨; P≤0.002). 이 도움을 받을 수 있는 환자군을 선택하는 데 도움을 줄 3가지 바이오마커는 임상적 예측 모델에 추가하였을 수 있다. Coronary Artery Disease Commentary 고위험 환자 혹은 특정 치료에 도움을 받을 환자의 선별 찰된 심혈관계 위험도 감소 효과에 대한 작용 기전을 설 은 환자별 맞춤 치료 및 치료의 최적화를 위해서는 필 명할 수 없고, 바이오마커 측정치의 재현성, 정상인과 수적인 요구사항이다. 환자의 선별과정에서 기능 검사, 의 측정치의 중복성 등은 여전히 해결되어야 할 숙제로 영상 검사나 바이오마커의 측정과 같은 표지자 검사가 남아있다. 실제로 많은 바이오마커들이 연구단계에서 기존의 임상적 예측모델을 대체할 수 있거나 임상적 예 는 가능성을 인정받지만, 실제 임상에서 적용되지 못하 측 모델의 예측력을 유의하게 개선할 수 있다면, 환자 는 가장 큰 문제 중 하나가 정상인과 고위험군의 선별능 진료 및 고위험군의 질병 발생 예방에 매우 중요한 역할 력에 있다고 판단된다. 즉, 기존의 임상적인 판단만으로 을 할 수 있을 것이다. 이 같은 기대를 바탕으로 많은 예 대부분의 고위험군을 구별할 수 있으므로, 결국 대상자 측 지표에 대한 연구와 평가가 진행되고 있다. 그러나 실 는 임상적으로 중등도 혹은 저위험군에 해당하는 환자 제로 BNP(B-type natriuretic peptide)와 같이 성공적으 에 국한하게 된다. 상대적으로 위험도가 낮은 환자들의 로 임상진료에 적용되고 있는 소수의 예를 제외하고는 경우에는 위험도 선별에 따른 예후의 개선 정도가 작을 대부분이 실제 진료에는 도움을 주지 못하고, 학술적 연 수밖에 없고, 정상군과 검사 결과가 겹치는 부분이 많을 구 단계에 머물러 있는 경우가 대부분이다. 이 같은 새 수밖에 없다는 근본적인 한계점을 가지고 있다. 궁극적 로운 바이오마커들이 진료에 이용되기 위해서는 병태생 으로는 전향적 연구를 포함한 다른 환자군에서의 재현 리적인 기전의 타당성 검증에서부터 측정법의 타당성, 성 평가가 반드시 필요하다고 하겠다. 측정값의 분포 및 목표 대상군의 선별 능력, 임상경과의 이 같은 현실적인 제한점들에도 불구하고 본 연구는 바 예측력 그리고 가능하면 치료 효과의 예측력과 경제적 이오마커를 기반으로 한 위험도 평가가 심혈관계 위험 타당성이 확보되어야 한다. 도를 예측하고, 치료 여부에 대한 가이드라인을 제시할 본 연구에서는 가능성을 인정받고 있는 4가지 새로운 수 있다는 좀 더 진일보된 가능성을 보여주었다는 점에 바이오마커를 ACE 저해제의 투약 여부가 무작위로 배 서 의의가 있다. 정된 기존의 무작위배정 임상연구에 참여한 대규모 환 자군에서 전향적으로 채집된 검체를 이용하여 수행되 었다. 전향적으로 수집된 임상 경과에 대한 영향을 다 각적인 분석을 통하여 위험도 평가 및 ACE 저해제의 임 상 적용의 가능성을 제시하였다는 데 의의가 있다고 하 겠다. 특히, 모집단인 PEACE 연구에서는 ACE 저해제를 사용하여 심혈관 위험도 감소 효과를 입증하지 못했던 점에 비해, 바이오마커를 통해 선별한 고위험군에서는 ACE 저해제 사용 시 유의한 위험도 감소 효과가 관찰됨 은 추후 바이오마커의 활용 가능성을 보여주었다는 측 면에서 주목을 받을 만하다. 그러나 현재로서는 ACE 저 해제를 투여받은 바이오마커가 증가된 환자군에서 관 Reference 111 Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG; Australia-New Zealand Heart Failure Group. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37:1781-1787. 59 Coronary Heart Disease Evaluation of Multiple Biomarkers of Cardiovascular Stress for Risk Prediction and Guiding Medical Therapy in Patients With Stable Coronary Disease Marc S. Sabatine, MD, MPH; David A. Morrow, MD, MPH; James A. de Lemos, MD; Torbjorn Omland, MD, PhD; Sarah Sloan, MS; Petr Jarolim, MD, PhD; Scott D. Solomon, MD; Marc A. Pfeffer, MD, PhD; Eugene Braunwald, MD Background—Circulating biomarkers can offer insight into subclinical cardiovascular stress and thus have the potential to aid in risk stratification and tailoring of therapy. Methods and Results—We measured plasma levels of 4 cardiovascular biomarkers, midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), and copeptin, in 3717 patients with stable coronary artery disease and preserved left ventricular ejection fraction who were randomized to trandolapril or placebo as part of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial. After adjustment for clinical cardiovascular risk predictors and left ventricular ejection fraction, elevated levels of MR-proANP, MR-proADM, and CT-proET-1 were independently associated with the risk of cardiovascular death or heart failure (hazard ratios per 1-SD increase in log-transformed biomarker levels of 1.97, 1.48, and 1.47, respectively; P�0.002 for each biomarker). These 3 biomarkers also significantly improved metrics of discrimination when added to a clinical model. Trandolapril significantly reduced the risk of cardiovascular death or heart failure in patients who had elevated levels of �2 biomarkers (hazard ratio, 0.53; 95% confidence interval, 0.36 – 0.80), whereas there was no benefit in patients with elevated levels of 0 or 1 biomarker (hazard ratio, 1.09; 95% confidence interval, 0.74 –1.59; Pinteraction�0.012). Conclusions—In patients with stable coronary artery disease and preserved left ventricular ejection fraction, our results suggest that elevated levels of novel biomarkers of cardiovascular stress may help identify patients who are at higher risk of cardiovascular death and heart failure and may be useful to select patients who derive significant benefit from angiotensin-converting enzyme inhibitor therapy. (Circulation. 2012;125:233-240.) Key Words: angiotensin-converting enzyme inhibitors � biomarkers � coronary disease E relation to cardiomyocyte and/or vascular stress offers the potential for more refined risk assessment. Specifically, atrial natriuretic peptide (ANP) is a vasodilator and natriuretic that is synthesized in the myocardium in response to increased wall tension.8 Adrenomedullin (ADM) is a potent vasodilator synthesized in the adrenal medulla, vascular endothelial cells, heart, and elsewhere in response to physical stretch and specific cytokines, with levels in the heart elevated in the setting of pressure and volume overload.9,10 Endothelin-1 (ET-1) is a potent vasoconstrictor and profibrotic hormone that is secreted by vascular endothelial cells, with levels correlating with shear stress and pulmonary artery pressure.11 Copeptin is a stable peptide derived from the precursor to levated levels of circulating biomarkers related to cardiac volume or pressure overload offer insight into subclinical cardiac stress and thus have the potential to aid in risk stratification.1 Specifically, elevated levels of B-type natriuretic peptide (BNP; either the hormone or the aminoterminal fragment of the prohormone [NT-proBNP]) have been shown to be predictive of mortality and/or heart failure events across a broad range of individuals, ranging from the general population to patients with overt heart failure.1–7 Clinical Perspective on p Development of newer assays that target more stable epitopes of hormones or prohormones that are released in Received August 24, 2011; accepted December 7, 2011. From the TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA (M.S.S., D.A.M., S.S., E.B.); Division of Cardiology, University of Texas Southwestern Medical Center, Dallas (J.A.d.L.); Division of Medicine, Akershus University Hospital and Center for Heart Failure Research and KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway (T.O.); Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (P.J.); and Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (S.D.S., M.A.P.). Guest Editor for this article was Gregg C. Fonarow, MD. The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA. 111.063842/-/DC1. Correspondence to Marc S. Sabatine, MD, MPH, TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, 350 Longwood Ave, Boston, MA 02115. E-mail [email protected] © 2011 American Heart Association, Inc. Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.111.063842 Downloaded from http://circ.ahajournals.org/ 233 by IMED Korea on April 23, 2012 60 61 234 Circulation January 17, 2012 arginine vasopressin, a vasoconstrictor that is secreted from the posterior pituitary in response not only to osmotic stimuli but also to hemodynamic changes detected by cardiac and vascular baroreceptors.12 Higher levels of these biomarkers have been associated with an increased risk of death and/or heart failure events in patients with established heart failure.13–16 The availability of an assay panel for these 4 biomarkers of cardiovascular stress that have shown promise in patients with established heart failure created the opportunity to investigate their utility in a broader population. Angiotensin-converting enzyme (ACE) inhibitors substantially reduce the risk of death and heart failure events in patients with heart failure, with the greatest benefit in those patients with the most clinically severe heart failure.17 Among patients with acute myocardial infarction (MI), the benefit of ACE inhibitors is greatest in those with high-risk clinical features such as anterior MI or depressed left ventricular systolic function.18 In contrast, the role of ACE inhibitors in lower-risk patients with stable coronary artery disease (CAD) without heart failure is less clear.19 –21 We explored the hypotheses that in such patients, elevated levels of midregional (MR) pro-ANP, MR-proADM, C-terminal proET-1 (CT-proET-1), and copeptin would offer prognostic value for cardiovascular death and heart failure independently of clinical risk factors and would identify patients who derive greater clinical benefit from the use of an ACE inhibitor. We tested these hypotheses by measuring plasma levels of these novel biomarkers of cardiovascular stress in 3717 patients with stable CAD and preserved left ventricular ejection fraction (LVEF) who were randomized to trandolapril or placebo as part of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial. Methods Patient Population This study involved 3717 patients with documented stable CAD who had been enrolled in the PEACE trial (www.ClinicalTrials.gov; unique identifier, NCT00000558) and provided a sample of blood at the time of enrollment. The design and main outcomes of the PEACE trial have been published previously,21 and salient features are detailed in the Methods section and Table I in the online-only Data Supplement. In brief, subjects were free of heart failure at baseline, and none had been hospitalized with an acute coronary syndrome or had undergone coronary revascularization within the 3 months preceding trial entry. Both the parent clinical trial and this substudy were approved by the relevant institutional review boards, and informed consent was obtained from all patients. Biomarker Analyses Baseline plasma levels of MR-proANP, MR-proADM, CTproET-1,24 and copeptin25 (assays from B.R.A.H.M.S. GmbH, Henningsdorf, Germany) were determined in the Thrombolysis in Myocardial Infarction (TIMI) Clinical Trials Laboratory (Boston, MA) as detailed in the Methods section and Table II in the online-only Data Supplement. Baseline levels of NT-proBNP and cardiac troponin T (cTnT) measured with a highly sensitive assay had been determined in this population, as previously published and summarized in the Methods section in the online-only Data Supplement.6,26 All testing was performed by personnel blinded to clinical outcomes and treatment allocation. 22 23 Outcomes On the basis of prior data regarding the predictive ability of biomarkers of cardiac stress,6 the primary outcome in this analysis was the composite of cardiovascular death or hospitalization for heart failure. Additionally, we explored other major adverse cardiovascular events that had been recorded in patients in the trial, including all-cause death, acute MI, acute stroke, and coronary revascularization (percutaneous or surgical). Event adjudication is detailed in the Methods section in the online-only Data Supplement. All clinical events were classified before biomarkers were measured. Statistical Analyses Baseline characteristics are reported as mean�SD for normally distributed continuous variables and as counts and percentages for categorical variables. Wilcoxon rank-sum and �2 tests for trend were used to test for differences in continuous and categorical baseline characteristics between quartiles of biomarkers. The Spearman correlation was used to calculate the association between different biomarkers and categorized based on standard cut points.27 The cumulative incidences of clinical outcomes across quartiles of each biomarker were compared by use of a log-rank test. Cox proportional-hazards models were used to examine the association between biomarker levels and outcome data. In these models, biomarker levels were examined both as a continuous variable (after natural logarithmic transformation) and as a categorical variable by quartiles. Associations were adjusted for age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior MI, prior percutaneous coronary intervention or coronary artery bypass grafting, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to apolipoprotein A, LVEF, aspirin use, �-blocker use, and lipid-lowering medication use. Starting with a model containing the aforementioned clinical covariates, a forward selection algorithm (P�0.05 to enter the model) was used to select among the 4 novel biomarkers, as well as NT-proBNP and cTnT. The incremental performance of the biomarkers in addition to clinical predictors was further evaluated by calculating changes in the C statistic, integrated discrimination improvement, and category-free net reclassification improvement metrics (see the Methods section in the online-only Data Supplement for further details).28 –30 To examine for heterogeneity in the effect of trandolapril on the risk of cardiovascular death or heart failure, hazard ratios (HRs) were calculated in patients who were and were not in the highest-risk category as defined by being in the top quartile of a biomarker level. To test for statistically significant effect modification, a Cox proportional hazards model was created that included a term for trandolapril, a term for biomarker risk category, and an interaction term. A value of P�0.05 was considered to indicate statistical significance, and all tests were 2 sided. No adjustment for multiple comparisons was performed. Although based on previous work with these biomarkers in other populations, all of the analyses we have performed in this biomarker substudy are inherently exploratory. Analyses were performed with STATA/IC (version 10.1, STATA Corp, College Station, TX) and R (version 2.12.1). Results Baseline Characteristics of the Patients and Biomarker Levels Baseline measurements of the 4 novel biomarkers were available for 3717 patients from the PEACE trial. The clinical characteristics of the patients are given in Table 1. By design, all patients had stable CAD, and LVEF was preserved at a mean�SD value of 58.7�9.6%. Median levels of MR-proANP, MR-proADM, CT-proET-1, and copeptin at baseline in patients in the PEACE trial were 90.45 pmol/L (25th–75th percentile, 63.68–128.3 pmol/L), 0.53 nmol/L (25th–75th percentile, 0.45–0.64 nmol/L), 47.82 pmol/L (25th–75th percentile, 39.04–57.02 pmol/L), and 6.47 pmol/L (25th–75th percentile, 0–10.67 pmol/L), respectively. The levels tended to be higher than those seen in healthy populations, but with the exception of MR-proADM, the majority of values were lower than the 97.5th percentile reported in healthy populations and lower than the values in patients with Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 62 Sabatine et al Table 1. Biomarkers of Cardiovascular Stress in Stable CAD Baseline Characteristics of Patients Baseline Characteristic All Patients, n Placebo 3717 1868 1849 64.1�8.2 64.1�8.2 64.2�8.1 Female sex, n (%) 701 (18.9) 334 (17.9) 367 (19.9) Weight, kg 83.9�15.7 83.7�15.7 84.2�15.6 1658 (44.6) 835 (44.7) 823 (44.5) 602 (16.2) 294 (15.7) 308 (16.7) Hypertension, n (%) Diabetes mellitus, n (%) Current smoker, n (%) Prior MI, n (%) 564 (15.2) 290 (15.5) 274 (14.8) 2087 (56.2) 1076 (57.6) 1011 (54.7) Prior PCI or CABG, n (%) 2697 (72.6) 1367 (73.2) 1330 (72.0) Aspirin use, n (%) 3389 (91.2) 1721 (92.2) 1668 (90.3) �-blocker use, n (%) 2303 (62.0) 1156 (61.9) 1147 (62.1) Lipid-lowering therapy use, n (%) 2667 (71.8) 1334 (71.5) 1333 (72.2) SBP, mm Hg 133.4�16.8 133.4�16.8 133.3�16.8 DBP, mm Hg �1 GFR, mL � min �2 � 1.73 m 78.1�10.0 78.2�10.2 78.0�9.8 77.9�19.4 78.3�19.4 77.6�19.3 ApoB, mg/dL 107.2�23.1 107.6�22.9 106.8�23.2 ApoA, mg/dL 138.2�24.6 138.6�24.5 137.8�24.7 LVEF, % 58.7�9.6 of MR-proANP and NT-proBNP (r�0.76), but correlations of NT-proBNP and cTnT with other markers were weak (r�0.38; Table VII in the online-only Data Supplement). Trandolapril Age, y 58.7�9.6 Clinical Outcomes Among patients allocated to the placebo arm of the PEACE trial, higher baseline levels of each of the 4 novel biomarker of cardiovascular stress were strongly associated with the subsequent risk of cardiovascular death or heart failure (the composite of which occurred in 114 patients), with up to approximately a doubling of the risk per each 1-SD increase in log-transformed biomarker levels (P�0.002 for each biomarker; Table 2). Risk increased across quartiles, especially the fourth quartile (Figure 1). Similar associations were seen between biomarker levels and the risk of cardiovascular death (which occurred in 67 patients) and of heart failure individually (which occurred in 56 patients; Table VIII in the online-only Data Supplement). After adjustment for traditional clinical risk predictors, estimated glomerular filtration rate, and LVEF (see Methods for a detailed list of covariates), elevated levels of MR-proANP, MR-proADM, and CT-proET-1 remained significantly associated with an increased risk of cardiovascular death or heart failure, ranging from 47% higher risk to a near doubling of the risk per each 1-SD increase in log-transformed biomarker levels (P�0.002 for each biomarker); in terms of quartile analysis, the risk was most pronounced for those patients in the top quartile, who had almost 3 times to �5 times the risk seen for patients in the lowest quartile. In contrast, after multivariable adjustment, the association with copeptin was no longer significant (Table 3). As was the case for the unadjusted analyses, similar associations were seen between biomarker levels and the risk of cardiovascular death and of heart failure individually (Table VIII in the online-only Data Supplement). Compared with cardiovascular death, the associations with the less cardiovascular-specific end point of all-cause death were significant but weaker (Table IX in the online-only Data Supplement). As expected on the basis of prior work,6,26 there were nonsignificant adjusted associations between levels of novel biomarkers of cardiovascular stress and the risk of acute MI, stroke, or coronary revascularization, with the exception of MR-proANP and stroke (P�0.043; Table IX in the onlineonly Data Supplement). 58.8�9.7 MI indicates myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; SBP, systolic blood pressure; DBP, diastolic blood pressure; GFR, glomerular filtration rate; ApoB, apolipoprotein B; ApoA, apolipoprotein A; and LVEF, left ventricular ejection fraction. Data are presented as mean�SD for normally distributed continuous variables and n (%) for dichotomous variables. overt heart failure (Table II in the online-only Data Supplement). Characteristics of patients according to quartiles of biomarker levels are shown in Tables III through VI in the online-only Data Supplement. In general, higher levels of biomarkers of cardiovascular stress were positively associated with greater age and prevalence of hypertension and lower estimated glomerular filtration rate. LVEF was inversely associated with MR-proANP and copeptin levels but differed by only 2.0 and 1.0 absolute percentage points between the top and bottom quartiles for the 2 biomarkers, respectively. Among the novel biomarkers, the only moderately strong correlation was between MR-proADM and CT-proET-1 (r�0.63); the others were moderate to low (r�0.44; Table VII in the online-only Data Supplement). As expected, there was a strong positive correlation between levels Table 2. 235 Association of Biomarker Levels and Clinical Outcomes in the Placebo Arm Risk for CV Death or Heart Failure Biomarker MR-proANP HR (95% CI) per 1-SD Increase in Log-Transformed Biomarker Values P 1 2 3 4 Multiple Partial Trend 2.25 (1.89 –2.42) �0.001 Referent 1.92 (0.85– 4.30) 3.10 (1.46 – 6.59) 7.30 (3.62–14.70) �0.0001 �0.0001 HR (95% CI) Across Quartiles P MR-proADM 1.69 (1.52–1.88) �0.001 Referent 2.15 (0.88–5.28) 3.65 (1.58–8.45) 10.25 (4.71–22.33) �0.0001 �0.0001 CT-proET-1 1.96 (1.57–2.44) �0.001 Referent 2.25 (1.14–4.45) 1.42 (0.68–2.98) 5.07 (2.72–9.44) �0.0001 �0.0001 Copeptin 1.30 (1.10–1.55) 0.002 Referent 0.88 (0.43–1.79) 1.23 (0.74–2.05) 2.09 (1.32–3.28) 0.0072 0.0013 CV indicates cardiovascular; HR, hazard ratio; CI, confidence interval; MR-proANP, midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. A total of 114 of the 1868 patients allocated to placebo experienced CV death or heart failure. Each biomarker was analyzed separately. In quartile analyses, “multiple partial” refers to a 3-df test for the addition of all quartiles and “trend” refers to a 1-df test for linear trend across quartiles. Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 63 236 Circulation January 17, 2012 Figure 1. Cumulative incidence curves for the composite of cardiovascular death or heart failure among patients in the placebo arm of the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial (n�1868) categorized by quartiles of midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), or copeptin. P values are for log-rank test for trend across quartiles. unbiased forward selection algorithm to create a multimarker model. The only 2 biomarkers to enter and remain in a model already containing clinical covariates were MR-proANP (adjusted HR, 1.79; 95% confidence interval [CI], 1.41–2.26; P�0.001) and MR-proADM (adjusted HR, 1.27; 95% CI, 1.07–1.51; P�0.007). The addition of MR-proANP, MR-proADM, and CTproET-1 individually to the clinical model significantly improved metrics of discrimination (Table 4). In contrast, the addition of copeptin did not improve these metrics. The addition We have previously measured NT-proBNP and cTnT in this population, and the association of those biomarkers with cardiovascular death or heart failure in a model adjusted for the aforementioned clinical covariates is shown in Table X in the online-only Data Supplement. Ranking each biomarker individually on the basis of the magnitude of risk (HR) per 1 SD gives the following order: MR-proANP (1.97), NT-proBNP (1.73), MR-proADM (1.48), CT-proET-1 (1.47), and cTnT (1.37). Given the correlation between the biomarkers and that none is established for routine use in this population, we used an Table 3. Multivariable-Adjusted Association of Biomarker Levels and Clinical Outcomes in the Placebo Arm Adjusted for Clinical Factors Adjusted Risk for CV Death or Heart Failure Biomarker HR (95% CI) per 1-SD Increase in Log-Transformed Biomarker Values HR (95% CI) Across Quartiles P 1 2 3 P 4 Multiple Partial Trend MR-proANP 1.97 (1.58 –2.46) �0.001 Referent 1.60 (0.70 –3.66) 2.72 (1.24 –5.96) 4.35 (1.96 –9.62) �0.0001 �0.0001 MR-proADM 1.48 (1.27–1.73) �0.001 Referent 1.90 (0.77–4.69) 2.45 (1.03–5.82) 5.51 (2.38–12.75) �0.0001 �0.0001 CT-proET-1 1.47 (1.15–1.88) 0.002 Referent 2.03 (1.03–4.04) 0.99 (0.46–2.11) 2.73 (1.41–5.27) �0.001 0.01 Copeptin 1.10 (0.91–1.33) 0.32 Referent 0.77 (0.37–1.57) 1.11 (0.66–1.86) 1.41 (0.87–2.28) 0.30 0.11 CV indicates cardiovascular; HR, hazard ratio; CI, confidence interval; MR-proANP, midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. Covariates in the model include standard clinical factors: age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior myocardial infarction, prior percutaneous coronary intervention or coronary artery bypass graft surgery, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to A, left ventricular ejection fraction, aspirin use, �-blocker use, and lipid-lowering medication use. Each biomarker was analyzed separately in the placebo arm. In quartile analyses, “multiple partial” refers to a 3-df test for the addition of all quartiles and “trend” refers to a 1-df test for linear trend across quartiles. Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 64 Sabatine et al Biomarkers of Cardiovascular Stress in Stable CAD Table 4. Impact of Biomarker Levels and Metrics of Discrimination and Reclassification in the Placebo Arm Integrated Discrimination Index C Statistic Net Reclassification Improvement Model Value P Value, % P Value P Clinical model alone 0.768 N/A N/A N/A N/A N/A 237 and CT-proET-1 uniformly and significantly improved the C statistic of multivariable models already containing clinical covariates, regardless of whether NT-proBNP, cTnT, or both were also in the model; conversely, adding NT-proBNP and cTnT to a model containing clinical covariates as well as MR-proANP, MR-proADM, and CT-proET-1 did not improve the C statistic (Table XI in the online-only Data Supplement). Interaction With Trandolapril Therapy �0.0001 0.412 �0.0001 Clinical model� 0.804 0.0018 MR-proANP 3.8 Clinical model� 0.788 0.0064 MR-proADM 1.9 0.0027 0.362 0.0003 Clinical model� 0.779 0.23 CT-proET-1 1.2 0.047 0.205 0.039 Clinical model� 0.769 0.85 copeptin 0.2 0.14 0.061 0.54 MR-proANP indicates midregional pro-atrial natriuretic peptide; MR-proADM, midregional pro-adrenomedullin; and CT-proET-1, C-terminal pro-endothelin-1. Terms in the clinical model include age, sex, weight, history of hypertension, history of diabetes mellitus, current tobacco use, prior myocardial infarction, prior percutaneous coronary intervention or coronary artery bypass graft surgery, systolic blood pressure, estimated glomerular filtration rate, ratio of apolipoprotein B to A, left ventricular ejection fraction, aspirin use, �-blocker use, and lipid-lowering medication use. Each biomarker was analyzed separately in the placebo arm. P values are for comparison with clinical model alone. of all 3 biomarkers to the clinical model improved the C statistic from 0.768 to 0.809 and yielded an integrated discrimination improvement of 4.6% and an net reclassification improvement of 0.435 (all P�0.0005). Adding MR-proANP, MR-proADM, In the overall biomarker cohort, treatment with trandolapril resulted in an HR of 0.80 (95% CI, 0.61–1.05) for cardiovascular death or heart failure. Notably, however, among patients having an MR-proANP, MR-proADM, or CT-proET-1 level in the top quartile and thus at the highest risk of cardiovascular death or heart failure based on these biomarkers, trandolapril significantly reduced the risk of cardiovascular death or heart failure by 34% to 44%, whereas no benefit was observed among those with lower levels (Figure 2A). In contrast, there was no significant benefit from treatment with trandolapril among patients in the highest quartiles of either NT-proBNP or cTnT (Figure I in the online-only Data Supplement). A gradient of benefit (Pinteraction�0.016) with trandolapril therapy was observed in patients categorized according to whether they had elevated levels of 0 (n�2037), 1 (n�891), 2 (n�472), or all 3 (n�317) novel biomarkers that we found to be associated with cardiovascular death or heart failure in adjusted analyses (Figure 2B). When the results were dichotomized, among the 2928 patients (79% of the biomarker cohort) with �1 elevated biomarker, there was no benefit of trandolapril therapy on the risk of cardiovascular death or heart failure (HR, 1.09; Figure 2. Benefit of trandolapril on the risk of the composite of cardiovascular (CV) death or heart failure in 3717 patients from the Prevention of Events With Angiotensin Converting Enzyme (PEACE) trial categorized according to their levels of biomarkers of cardiovascular stress. A, Patients are categorized according to whether their level of each biomarker of cardiovascular stress was in the top quartile (quartile 4) or not (quartiles 1–3). The P values for interaction were 0.16, 0.02, 0.09, and 0.72 for midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), C-terminal pro-endothelin-1 (CT-proET-1), and copeptin, respectively. B, Patients are categorized by the number of biomarkers (MR-proANP, MR-proADM, and CT-proET-1) in the top quartile; the P value for interaction is 0.016. In A and B, the diamonds indicate the effect in the entire biomarker cohort, with the center indicating the point estimate and the left and right ends indicating the 95% confidence interval (CI). The squares and circles indicate the point estimate, and the horizontal lines indicate the 95% CIs for the effect in each subgroup. HR indicates hazard ratio. Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 65 238 Circulation January 17, 2012 Figure 3. Cumulative incidence curves for the composite of cardiovascular death or heart failure in 3717 patients from the Prevention of Events with Angiotensin Converting Enzyme (PEACE) trial categorized by whether they had �1 elevated biomarkers (solid lines; red indicates 1487 patients treated with placebo; blue, 1441 patients treated with trandolapril) or �2 elevated biomarkers (dashed lines; red indicates 381 patients treated with placebo; blue, 408 patients treated with trandolapril). HR indicates hazard ratio; CI, confidence interval. 95% CI, 0.74 –1.59), whereas among the 789 patients (21% of the biomarker cohort) with �2 elevated biomarkers, trandolapril significantly reduced the rate of cardiovascular death or heart failure (HR, 0.53; 95% CI, 0.36 – 0.80; P�0.002, Pinteraction�0.012; Figure 3). The absolute risk reduction over 6 years in this latter group was 7.5%; thus, in this subset, 14 patients would need to be treated with trandolapril for 6 years to prevent a cardiovascular death or hospitalization for heart failure. Discussion In an exploratory analysis among a large cohort of patients with stable CAD and preserved LVEF, we have demonstrated that elevated levels of 3 novel biomarkers of cardiovascular stress are independently associated with the subsequent risk of cardiovascular death and heart failure. Specifically, MRproANP, MR-proADM, and CT-proET-1 were associated with cardiovascular death or heart failure independently of clinical factors, renal function, and LVEF, ranging from 47% higher risk to a near doubling of the risk per each 1-SD increase in log-transformed biomarker levels and almost 3 times to �5 times the risk for patients in the highest compared with the lowest quartile. In contrast, a fourth biomarker, copeptin, was not independently associated with the risk of cardiovascular events. Moreover, and in contrast to previous results with other biomarkers, including NTproBNP and cTnT,6,26,31 elevated levels of these 3 biomarkers identified patients in whom, despite appearing to be at low risk clinically, therapy with an ACE inhibitor resulted in a significant reduction in the risk of cardiovascular death or heart failure. We used assays for the prohormones ANP, ADM, and ET-1 because the prohormones are released in an equimolar ratio to the vasoactive hormones but have a longer half-life. When possible, we also used assays for a midregional fragment because these fragments are more stable in vivo and ex vivo than the amino- or carboxy-terminal part of the prohormone, thereby minimizing the risk of underestimation of levels as a result of early degradation of crucial epitopes at the extreme ends of the molecule.32 In studies of patients with established heart failure, elevated levels of MR-proANP, MR-proADM, and CT-proET-1 have been shown to be associated with mortality independently of clinical variables, and the biomarkers have displayed prognostic and discriminatory value that has compared favorably with BNP and/or NT-proBNP.13–15 Concordant with those observations, in our data set, we found that during the creation of a multimarker model adjusted for clinical factors, MR-proANP and MR-proADM proved to be the strongest 2 biomarkers, superior to NT-proBNP and cTnT measured with a highly sensitive assay. Because this was a clinical rather than a mechanistic study, we can only speculate as to the reasons for the superior performance, which could be related to subtle differences in the respective pathobiology underlying elevation of each of the biomarkers or could stem from more favorable analytic properties that translate into a better reflection of subclinical cardiovascular pathology. Regardless, our data are supported by and extend previous findings regarding these biomarkers and atherosclerosis reported by Schnabel and colleagues7 in several ways, including studying patients who were free of heart failure at baseline and whose LVEF was known and incorporated into all multivariable models, using patients enrolled from a much broader number of clinical centers, and examining the specific clinical events that biomarkers of cardiac stress are best suited to predict, namely cardiovascular death and heart failure, rather than a composite of death or MI. Critically, whereas other biomarker analyses have been embedded in observational cohorts, we had the benefit of studying these biomarkers in a randomized clinical trial, allowing us to examine the interaction between baseline biomarker levels and the efficacy of the randomized therapy without concern for the inherent bias in examining nonrandomly allocated therapies. Using a panel of these novel biomarkers of cardiovascular stress, we were able to identify approximately one fifth of enrolled patients with stable CAD in whom ACE inhibitor therapy nearly halved the risk of cardiovascular death or heart failure. Our findings are conceptually analogous to the results of Richards and colleagues,33,34 who showed that elevated levels of biomarkers of cardiovascular stress identified patients with ischemic left ventricular dysfunction who benefited from �-blockade. Current practice guidelines for the management of patients with stable CAD recommend ACE inhibitor therapy in those patients with an LVEF �40%; in addition, in part on the basis of data from the Heart Outcomes Prevention Evaluation (HOPE) trial, ACE inhibitors are recommended for patients who are relatively high risk and/or have another compelling clinical indication (eg, hypertension, diabetes mellitus, or chronic kidney disease).35 In contrast, for lower-risk patients like those in the PEACE trial, in which the event rate in the placebo arm was lower than the event rate in the ACE inhibitor arm from the HOPE trial, the guidelines note that it is reasonable but not recommended to use ACE inhibitors when cardiovascular risk factors are well controlled and revascularization has been performed. Our data now support the hypothesis that within this very large population of patients who appear to be of lower risk Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 66 Sabatine et al Biomarkers of Cardiovascular Stress in Stable CAD clinically, biomarkers of cardiovascular stress levels may be useful to help guide such decision making. Although additional prospective analyses will need to be done if these biomarkers become available for routine clinical use in the United States, targeting long-term drug therapy based on a panel of biomarkers should be cost effective. Several potential limitations of our study deserve consideration. The PEACE clinical trial population, which was predominantly a white, male population �50 years of age, is not representative of the general population. However, the clinical and laboratory characteristics of patients in this study are typical of patients with stable coronary disease, and a high proportion of patients were treated with �-blockers and lipid-lowering therapy. Blood samples were obtained from only a subgroup of the participants in the overall PEACE trial, but there were no clinically relevant differences between patients who did and did not participate in the biomarker substudy. Banked biosamples were used, but any sample degradation should be random with respect to cardiovascular outcomes, and thus any resultant misclassification should only bias toward the null hypothesis. The formation of the multimarker score for interaction with therapy should be considered exploratory, and the optimal combination of biomarkers and their cut points merits validation in additional populations. Heart failure events were not a component of the prespecified primary outcome in the original trial design but are a well-established outcome predicted by biomarkers of cardiac stress and prevented by ACE inhibitors in other populations.6,19,20,26 Conclusion In apparently low-risk patients with stable CAD and preserved LVEF, elevated levels of novel biomarkers reflecting cardiovascular stress may be useful both to identify patients who are at higher risk of cardiovascular death and heart failure and to select patients who derive a significant benefit from ACE inhibitor therapy. Sources of Funding The PEACE trial was supported by a contract from the National Heart, Lung, and Blood Institute (NHLBI; N01 HC65149) and by Knoll Pharmaceuticals and Abbott Laboratories, which also provided the study medication. Dr Sabatine was supported in part by grant R01 HL094390 from the NHLBI. Reagent for measurement of MR-proANP, MR-proADM, CT-proET-1, and copeptin were provided by B.R.A.H.M.S. GmbH (Henningsdorf, Germany). The NHLBI, Knoll Pharmaceuticals, Abbott Laboratories, and B.R.A.H.M.S. GmbH had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. Disclosures Drs Sabatine, Morrow, and Braunwald and S. Sloan are members of the TIMI Study Group, which has received research grant support from Accumetrics, Amgen, AstraZeneca, Beckman Coulter, BG Medicine, B.R.A.H.M.S. GmbH, Bristol-Myers Squibb, CV Therapeutics, Daiichi Sankyo Co Ltd, diaDexus, Eli Lilly and Co, Genentech, GlaxoSmithKline, Integrated Therapeutics, Johnson & Johnson, Merck and Co, Nanosphere, Novartis Pharmaceuticals, Nuvelo, Ortho-Clinical Diagnostics, Pfizer, Roche Diagnostics, Sanofi-aventis, Siemens, and Singulex. Dr Sabatine reports receiving honoraria for educational presentations from Bristol-Myers Squibb and diaDexus, as well as remuneration for consulting from AstraZeneca, Bristol-Myers Squibb/ Sanofi-aventis Joint Venture, Daiichi-Sankyo/Lilly Partnership, Sanofi- 239 aventis, and Singulex. Dr Morrow reports receiving honoraria for educational presentations from Eli Lilly; remuneration for consulting from Beckman-Coulter, Boehringer Ingelheim, Cardiokinetix, Critical Diagnostics, Gilead, Instrumentation Laboratory, Ikaria, Menarini, Merck, OrthoClinical Diagnostics, Servier, Roche Diagnostics, and Siemens; and remuneration from AstraZeneca for adjudication as a member of a Clinical Events Committee. Dr de Lemos reports receiving grant support from Roche and Alere, Inc (formerly Biosite) and consulting income from Alere, Johnson & Johnson Roche Diagnostics, and Tethys Biomedical. Dr Omland reports receiving speakers’ honoraria from Roche Diagnostics and Abbott Laboratories. Dr Jarolim reports receiving research support from Amgen, Beckman-Coulter, Ortho Clinical Diagnostics, Roche Diagnostics, and Siemens Healthcare Diagnostics; honoraria for educational presentations from Ortho Clinical Diagnostics; and consulting fees from T2 Biosystems. Dr Pfeffer reports receiving grant support from Amgen, Novartis, and Sanofi-aventis, as well as consulting fees from Amgen, Anthera, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cerenis, Eleven Biotherapeutics, GlaxoSmithKline, Hamilton Health Sciences, Karo Bio, Novartis, Roche, Salutria, Sanofi Aventis, Servier, and University of Oxford. Dr Pfeffer is a coinventor on a patent that Brigham and Women’s Hospital has for the use of inhibitors of the renin-angiotensin system in selected survivors of MI. His share of the licensing agreements with Novartis and Boehringer, which are irrevocably transferred to charity, are not linked to sales. Dr Braunwald reports receiving remuneration for symposia and/or consulting from Amorcyte, CardioRentis, CVRx, Daiichi Sankyo, Eli Lilly, Genzyme, Medicines Co, and Merck & Co. The other authors report no conflicts. References 1. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358: 2148 –2159. 2. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655– 663. 3. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlov J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–2116. 4. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, Hall C, Cannon CP, Braunwald E. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014 –1021. 5. Morrow DA, de Lemos JA, Blazing MA, Sabatine MS, Murphy SA, Jarolim P, White HD, Fox KA, Califf RM, Braunwald E. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA. 2005;294:2866 –2871. 6. Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, Landaas S, Rouleau JL, Domanski MJ, Hall C, Pfeffer MA, Braunwald E. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol. 2007;50: 205–214. 7. Schnabel RB, Schulz A, Messow CM, Lubos E, Wild PS, Zeller T, Sinning CR, Rupprecht HJ, Bickel C, Peetz D, Cambien F, Kempf T, Wollert KC, Benjamin EJ, Lackner KJ, Munzel TF, Tiret L, Vasan RS, Blankenberg S. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J. 2010;31:3024 –3031. 8. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–328. 9. Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJ. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004; 103:179 –201. 10. Jougasaki M, Stevens TL, Borgeson DD, Luchner A, Redfield MM, Burnett JC Jr. Adrenomedullin in experimental congestive heart failure: cardiorenal activation. Am J Physiol. 1997;273:R1392–R1399. 11. Spieker LE, Noll G, Ruschitzka FT, Luscher TF. Endothelin receptor antagonists in congestive heart failure: a new therapeutic principle for the future? J Am Coll Cardiol. 2001;37:1493–1505. 12. Finley JJ 4th, Konstam MA, Udelson JE. Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation. 2008;118:410 – 421. 13. Moertl D, Berger R, Struck J, Gleiss A, Hammer A, Morgenthaler NG, Bergmann A, Huelsmann M, Pacher R. Comparison of midregional proatrial and B-type natriuretic peptides in chronic heart failure: influencing Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 67 240 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Circulation January 17, 2012 factors, detection of left ventricular systolic dysfunction, and prediction of death. J Am Coll Cardiol. 2009;53:1783–1790. von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, Rozentryt P, Vassanelli C, Struck J, Banasiak W, Ponikowski P, Kremastinos D, Bergmann A, Morgenthaler NG, Anker SD. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484 – 491. Jankowska EA, Filippatos GS, von Haehling S, Papassotiriou J, Morgenthaler NG, Cicoira M, Schefold JC, Rozentryt P, Ponikowska B, Doehner W, Banasiak W, Hartmann O, Struck J, Bergmann A, Anker SD, Ponikowski P. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1. PLoS One. 2011;6:e14506. Stoiser B, Mortl D, Hulsmann M, Berger R, Struck J, Morgenthaler NG, Bergmann A, Pacher R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006;36:771–778. Garg R, Yusuf S. Overview of randomized trials of angiotensinconverting enzyme inhibitors on mortality and morbidity in patients with heart failure: Collaborative Group on ACE Inhibitor Trials. JAMA. 1995; 273:1450 –1456. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97:2202–2212. Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–153. European Trial on Reduction of Cardiac Events With Perindopril in Stable Coronary Artery Disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–788. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Rouleau JL; PEACE Trial Investigators. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058 –2068. Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin Chem. 2004;50:234 –236. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005;51:1823–1829. Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A. Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin Chem. 2006;52:1144–1151. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–119. 26. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538 –2547. 27. Guilford JP. Fundamental Statistics in Psychology and Education. New York, NY: McGraw Hill; 1956. 28. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–172. 29. Harrell FE. Harrell Miscellaneous. R Graphical Manual. December 26, 2008. http://biostat.mc.vanderbilt.edu/s/Hmisc. 2009. Accessed December 16, 2010. 30. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21. 31. Sabatine MS, Morrow DA, Jablonski KA, Rice MM, Warnica JW, Domanski MJ, Hsia J, Gersh BJ, Rifai N, Ridker PM, Pfeffer MA, Braunwald E. Prognostic significance of the Centers for Disease Control/ American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. Circulation. 2007;115:1528 –1536. 32. Ala-Kopsala M, Magga J, Peuhkurinen K, Leipala J, Ruskoaho H, Leppaluoto J, Vuolteenaho O. Molecular heterogeneity has a major impact on the measurement of circulating N-terminal fragments of A- and B-type natriuretic peptides. Clin Chem. 2004;50:1576 –1588. 33. Richards AM, Doughty R, Nicholls MG, Macmahon S, Ikram H, Sharpe N, Espiner EA, Frampton C, Yandle TG. Neurohumoral prediction of benefit from carvedilol in ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. Circulation. 1999;99: 786 –792. 34. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37:1781–1787. 35. Fraker TD Jr, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, Ferguson TB Jr, Fihn SD, Fraker TD Jr, Gardin JM, O’Rourke RA, Williams SV, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Page RL, Riegel B, Tarkington LG, Yancy CW. 2007 Chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. Circulation. 2007;116:2762–2772. CLINICAL PERSPECTIVE The benefit of angiotensin-converting enzyme inhibitors in low-risk patients with stable coronary artery disease without heart failure remains controversial, and current practice guidelines note that it is reasonable but not recommended to use angiotensin-converting enzyme inhibitors when cardiovascular risk factors are well controlled and revascularization has been performed. We now demonstrate that elevated levels of 3 novel biomarkers of cardiovascular stress, midregional pro-atrial natriuretic peptide, midregional pro-adrenomedullin, and C-terminal pro-endothelin-1, are associated with the subsequent risk of cardiovascular death and heart failure independently of clinical factors (adjusted hazard ratios per 1-SD increase of 1.97, 1.48, and 1.47, respectively; P�0.002 for each biomarker). Furthermore, elevated levels of these biomarkers identified patients in whom therapy with an angiotensin-converting enzyme inhibitor resulted in a significant reduction in the risk of cardiovascular death or heart failure. Specifically, trandolapril significantly reduced the risk of cardiovascular death or heart failure in patients who had elevated levels of �2 biomarkers (hazard ratio, 0.53; 95% confidence interval, 0.36–0.80), whereas there was no benefit in patients with elevated levels of 0 or 1 biomarker (hazard ratio, 1.09; 95% confidence interval, 0.74–1.59; Pinteraction�0.012). Thus, in patients with stable coronary artery disease and preserved left ventricular ejection fraction, elevated levels of novel biomarkers of cardiovascular stress identify patients who are at higher risk of cardiovascular death and heart failure and may be useful to select patients who derive significant benefit from angiotensin-converting enzyme inhibitor therapy. Downloaded from http://circ.ahajournals.org/ by IMED Korea on April 23, 2012 Page 315 Maladie coronaire Intérêt des différents biomarqueurs du stress cardiovasculaire pour la prédiction du risque et l’orientation du traitement médical chez les patients coronariens stables Marc S. Sabatine, MD, MPH ; David A. Morrow, MD, MPH ; James A. de Lemos, MD ; Torbjorn Omland, MD, PhD ; Sarah Sloan, MS ; Petr Jarolim, MD, PhD ; Scott D. Solomon, MD ; Marc A. Pfeffer, MD, PhD ; Eugene Braunwald, MD Contexte—Les biomarqueurs circulants peuvent renseigner sur le degré de stress cardiovasculaire infraclinique et, par là-même, faciliter la stratification des risques et l’adaptation du traitement. Méthodes et résultats—Nous avons mesuré les taux plasmatiques de quatre biomarqueurs cardiovasculaires, à savoir les fragments médians du propeptide natriurétique atrial (MR-proANP) et de la pro-adrénomédulline (MR-proADM), le fragment C-terminal de la pro-endothéline de type 1 (CT-proET-1) et la copeptine, chez 3 717 patients coronariens stables dont la fraction d’éjection ventriculaire gauche était conservée et qui avaient été randomisés en vue de recevoir du trandolapril ou un placebo dans le cadre de l’essai Prevention of Events With Angiotensin Converting Enzyme (PEACE). Après ajustement en fonction des facteurs cliniques de risque cardiovasculaire et de la fraction d’éjection ventriculaire gauche, des taux augmentés de MR-proANP, de MR-proADM et de CT-proET-1 se sont révélés corrélés de façon indépendante avec le risque de décès de cause cardiovasculaire ou de survenue d’une insuffisance cardiaque (risques relatifs pour chaque augmentation de 1 ET des logarithmes naturels des taux de ces biomarqueurs respectivement estimés à 1,97, 1,48 et 1,47 ; p ≤0,002 pour chaque biomarqueur). Ces trois biomarqueurs ont également significativement amélioré le pouvoir de discrimination du modèle clinique auquel ils avaient été incorporés. L’administration de trandolapril a significativement abaissé le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque chez les patients qui présentaient des élévations des taux d’au moins deux biomarqueurs (risque relatif : 0,53 ; intervalle de confiance [IC] à 95 % : 0,36 à 0,80), alors qu’elle n’a eu aucune influence bénéfique en l’absence d’élévation des biomarqueurs ou lorsque le taux d’un seul d’entre eux était augmenté (risque relatif : 1,09 ; IC à 95 % : 0,74 à 1,59 ; pinteraction = 0,012). Conclusions—Nos observations tendent à montrer que, chez les patients présentant une maladie coronaire stable et une fraction d’éjection ventriculaire gauche préservée, la mise en évidence de taux augmentés de ces nouveaux biomarqueurs du stress cardiovasculaire peut permettre de dépister ceux d’entre eux qui encourent un risque plus élevé de décès de cause cardiovasculaire ou d’insuffisance cardiaque et, par ailleurs, d’identifier les sujets chez lesquels la prescription d’un inhibiteur de l’enzyme de conversion de l’angiotensine serait hautement bénéfique. (Traduit de l’anglais : Evaluation of Multiple Biomarkers of Cardiovascular Stress for Risk Prediction and Guiding Medical Therapy in Patients With Stable Coronary Disease. Circulation. 2012;125:233–240.) Mots clés : inhibiteurs de l’enzyme de conversion de l’angiotensine 䊏 biomarqueurs 䊏 maladie coronaire ’élévation des taux de biomarqueurs circulants découlant de l’augmentation de la précharge ou de la postcharge cardiaque témoigne de l’existence d’un stress cardiovasculaire infraclinique et pourrait, dès lors, constituer un élément susceptible de faciliter la stratification des risques.1 De fait, il a été démontré que l’augmentation du taux de peptide L Reçu le 24 août 2011 ; accepté le 7 décembre 2011. Groupe d’étude TIMI, Unité Cardiovasculaire, Brigham and Women’s Hospital et Service de Médecine, Faculté de Médecine d’Harvard, Boston, Massachusetts, Etats-Unis (M.S.S., D.A.M., S.S., E.B.) ; Service de Cardiologie, Southwestern Medical Center de l’Université du Texas, Dallas, Etats-Unis (J.A.d.L.) ; Service de Médecine de l’Hôpital Universitaire d’Akershus, Centre de Recherche sur l’Insuffisance Cardiaque et Centre de Recherche Cardiologique KG Jebsen, Université d’Oslo, Oslo, Norvège (T.O.) ; Service d’Anatomopathologie, Brigham and Women’s Hospital, Faculté de Médecine d’Harvard, Boston, Massachusetts, Etats-Unis (P.J.) ; et Unité Cardiovasculaire, Brigham and Women’s Hospital, Faculté de Médecine d’Harvard, Boston, Massachusetts, Etats-Unis (S.D.S., M.A.P.). Le rédacteur invité pour cet article était le Dr Gregg C. Fonarow. Le supplément de données uniquement disponible en ligne peut être consulté, tout comme la version anglaise de cet article, sur le site : http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA.111.063842/-/DC1. Correspondance : Marc S. Sabatine, MD, MPH, TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, 350 Longwood Ave, Boston, MA 02115, Etats-Unis. E-mail : [email protected] © 2012 American Heart Association, Inc. Circulation est disponible sur le site : http://circ.ahajournals.org 315 10:00:26:07:12 Page 315 Page 316 316 Circulation Septembre 2012 natriurétique de type B (BNP ; l’observation valant pour l’hormone elle-même et pour le fragment amino-terminal de son précurseur [NT-proBNP]) est prédictive de décès et/ou d’insuffisance cardiaque chez de multiples catégories d’individus, depuis la population générale jusqu’aux patients atteints d’insuffisance cardiaque avérée.1–7 Le développement de méthodes de dosage innovantes ayant pour cibles les épitopes plus stables des hormones et prohormones qui sont libérées en réponse aux agressions dont sont l’objet les cardiomyocytes et/ou l’appareil vasculaire est de nature à permettre une évaluation plus fine des risques. Plus précisément, le peptide natriurétique atrial (ANP) est une substance vasodilatatrice et natriurétique qui est synthétisée par le myocarde lorsque la tension pariétale augmente.8 L’adrénomédulline (ADM) est un puissant vasodilatateur produit par la médullaire des surrénales, les cellules de l’endothélium vasculaire, le cœur et d’autres structures sous l’effet de l’étirement physique et de certaines cytokines, sa concentration cardiaque s’élevant en cas d’augmentation de la précharge ou de la postcharge.9,10 L’endothéline de type 1 (ET-1) est à la fois un puissant vasoconstricteur et une hormone profibrotique qui est sécrétée par les cellules de l’endothélium vasculaire et dont le taux augmente parallèlement aux forces de cisaillement et à la pression artérielle pulmonaire.11 La copeptine est un peptide stable issu du précurseur de l’arginine-vasopressine, un vasoconstricteur sécrété par la post-hypophyse en réponse à la fois aux stimuli osmotiques et aux modifications hémodynamiques détectées par les barorécepteurs cardiaques et vasculaires.12 Il a été établi que, chez les patients atteints d’insuffisance cardiaque avérée, l’élévation des taux de ces marqueurs biologiques est corrélée avec l’augmentation du risque de décès et/ou d’événement lié à l’insuffisance cardiaque.13–16 Le fait que le dosage de ces quatre biomarqueurs du stress cardiovasculaire soit désormais réalisable par des méthodes d’analyse dont l’apport potentiel a été démontré chez les patients en question a tout naturellement conduit à examiner leur utilité dans une population plus vaste. Les inhibiteurs de l’enzyme de conversion de l’angiotensine (IEC) réduisent significativement le risque de décès et d’événements liés à l’insuffisance cardiaque chez les patients atteints d’une telle affection, leur impact bénéfique étant maximal dans les formes cliniques les plus sévères.17 Chez les patients présentant un infarctus du myocarde (IDM) en phase aiguë, les IEC exercent leur effet bénéfique le plus marqué lorsque l’IDM présente des caractéristiques cliniques à haut risque telles qu’une localisation à la paroi antérieure ou une altération de la fonction systolique ventriculaire gauche.18 En revanche, les données sont moins tranchées en ce qui concerne le rôle joué par ces médicaments chez les patients coronariens stables exposés à un risque plus faible car indemnes d’insuffisance cardiaque.19–21 Les hypothèses que nous avons donc cherché à vérifier étaient, d’une part, que, chez ces patients, l’élévation des taux de fragments médians du pro-ANP (MR-proANP), de la proADM, de fragment C-terminal de la proET-1 (CT-proET-1) et de copeptine serait prédictive de décès de cause cardiovasculaire et d’insuffisance cardiaque indépendamment des facteurs de risque cliniques et, d’autre part, que le dosage de ces biomarqueurs 10:00:26:07:12 Page 316 permettrait d’identifier les patients susceptibles de tirer un meilleur bénéfice clinique de la prescription d’un IEC. Nous avons testé ces hypothèses en mesurant les taux plasmatiques de ces nouveaux biomarqueurs du stress cardiovasculaire chez 3 717 patients coronariens stables dont la fraction d’éjection ventriculaire gauche (FEVG) était conservée, qui ont été randomisés en vue de recevoir du trandolapril ou un placebo dans le cadre de l’essai PEACE (Prevention of Events With Angiotensin Converting Enzyme [prévention des événements par l’administration d’un enzyme de conversion de l’angiotensine]). Méthodes Population de l’étude L’étude a porté sur 3 717 patients atteints d’une maladie coronaire stable documentée qui avaient été inclus dans l’essai PEACE (www.ClinicalTrials.gov ; identifiant unique : NCT00000558) et chez lesquels un échantillon sanguin avait été prélevé à leur entrée dans l’essai. Le plan d’organisation et les principaux résultats de PEACE ont été précédemment publiés,21 les aspects majeurs étant détaillées au chapitre « Méthodes » et dans le Tableau I du supplément de données uniquement disponible en ligne. En résumé, les patients n’étaient pas insuffisants cardiaques à leur entrée dans l’étude et aucun n’avait été hospitalisé pour un syndrome coronaire aigu ni n’avait fait l’objet d’une intervention de revascularisation coronaire dans les 3 mois ayant précédé son inclusion. L’étude mère et la présente sous-étude ont toutes deux été approuvées par les comités d’éthique des établissements concernés et tous les patients ont fourni leur consentement éclairé. Analyse des marqueurs biologiques Les taux plasmatiques initiaux de MR-proANP,22 MR-proADM,23 CT-proET-124 et copeptine (coffrets de dosage B.R.A.H.M.S. Gmbh, Henningsdorf, Allemagne) ont été mesurés dans le laboratoire des essais cliniques TIMI (Thrombolysis in Myocardial Infarction [thrombolyse dans l’infarctus du myocarde]) (Boston, Massachusetts, Etats-Unis) comme décrit au chapitre « Méthodes » et dans le Tableau II du supplément de données uniquement disponible en ligne. Les taux de NT-proBNP et de troponine T cardiaque (TnTc) avaient également été mesurés chez ces patients à l’entrée dans l’essai par une méthode de dosage hautement sensible, comme cela a été précédemment publié et est résumé au chapitre « Méthodes » du supplément de données uniquement disponible en ligne.6,26 Les dosages ont tous été réalisés par du personnel qui ignorait les résultats cliniques et le traitement assigné aux patients. Critères de jugement En nous fondant sur les données ayant établi la valeur prédictive des biomarqueurs du stress cardiovasculaire,6 nous avons retenu comme critère de jugement principal de l’étude l’incidence de l’événement composite regroupant le décès de cause cardiovasculaire et l’hospitalisation pour insuffisance cardiaque. Nous avons également examiné d’autres événements cardiovasculaires majeurs qui avaient été pris en compte chez les patients de l’étude, à savoir le décès lié à toute cause, l’IDM aigu, l’accident vasculaire cérébral en phase aiguë et les procédures de revascularisation coronaire (par approche percutanée ou chirurgicale). Les modalités de validation des événements sont détaillées au chapitre « Méthodes » du supplément de données uniquement disponible en ligne. Tous les événements cliniques ont été qualifiés préalablement au dosage des marqueurs biologiques. Analyses statistiques Les caractéristiques initiales sont décrites sous forme de moyennes ± ET dans le cas de variables continues de distribution normale et de Page 317 Sabatine et al Biomarqueurs du stress cardiovasculaire dans la maladie coronaire stable nombres et pourcentages dans le cas de variables catégorielles. Un test de sommation des rangs de Wilcoxon et un test du χ 2 pour la tendance ont été employés pour analyser les différences de valeurs des variables continues et catégorielles relevées à l’entrée dans l’étude en fonction des quartiles des taux de biomarqueurs. Nous avons eu recours à la méthode de corrélation de Spearman pour rechercher les liens existant entre les différents biomarqueurs en effectuant un classement en fonction des valeurs seuils standardisées.27 Un test des rangs logarithmiques a été effectué pour comparer les incidences cumulées d’événements cliniques entre les quartiles de taux de chaque marqueur biologique. Des modèles à risques proportionnels de Cox ont été utilisés pour analyser les relations entre les taux de biomarqueurs et les événements cliniques. Dans les modèles en question, les taux de biomarqueurs ont été examinés à la fois en tant que variables continues (après transformation en leur logarithme naturel) et en tant que variables catégorielles classées par quartile. Les liens observés ont été ajustés pour l’âge, le sexe, le poids corporel, l’hypertension artérielle, le diabète, l’existence d’un tabagisme, les antécédents d’IDM et d’intervention coronaire percutanée ou de pontage aorto-coronaire, la pression artérielle systolique, le taux de filtration glomérulaire estimé, le rapport apolipoprotéine B/apolipoprotéine A, la FEVG et les prescriptions d’aspirine, de bêtabloquants et d’hypolipémiants. En commençant par un modèle qui regroupait toutes les covariables cliniques mentionnées ci-dessus, nous avons employé un algorithme de sélection par éliminations successives (dans lequel le degré de significativité des variables devait atteindre une valeur de p inférieure à 0,05 pour que celles-ci puissent être conservées dans le modèle) pour départager les quatre biomarqueurs nouvellement validés, auxquels ont été ajoutés le NT-proBNP et la TnTc. L’augmentation du pouvoir prédictif conféré par l’inclusion de ces biomarqueurs, par rapport à la valeur informative des facteurs cliniques, a été également évaluée en examinant les modifications qui en avaient résulté en termes de statistique C, d’amélioration de la discrimination intégrée et d’amélioration de la reclassification nette indépendante de la catégorie (pour de plus amples détails, se reporter au chapitre « Méthodes » du supplément de données uniquement disponible en ligne).28–30 Pour juger de l’hétérogénéité de l’effet du trandolapril sur le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque, les risques relatifs (RR) ont été calculés selon que les patients se situaient ou non dans la catégorie de risque la plus élevée, c’est-à-dire dans le plus haut quartile de taux de l’un des biomarqueurs considérés. Pour rechercher une éventuelle modification statistiquement significative de l’effet exercé, nous avons conçu un modèle à risques proportionnels de Cox qui prenait en compte l’administration de trandolapril, la catégorie de risque définie par le taux de biomarqueur et l’interaction entre les deux. Les valeurs de p inférieures à 0,05 ont été considérées comme statistiquement significatives, les tests effectués ayant tous été bidirectionnels. Aucun ajustement n’a été pratiqué pour les comparaisons multiples. Bien qu’elles aient été fondées sur de précédents travaux menés sur ces marqueurs biologiques dans d’autres populations, toutes les analyses que nous avons effectuées dans cette sous-étude avaient par essence un caractère exploratoire. Les analyses ont été réalisées au moyen des programmes STATA/IC version 10.1 (STATA Corp., College Station, Texas, Etats-Unis) et R version 2.12.1. Résultats Caractéristiques des patients et taux de biomarqueurs à l’entrée dans l’étude Les valeurs des quatre biomarqueurs biologiques avaient été mesurées chez 3 717 patients de l’essai PEACE à leur entrée dans ce dernier. Les caractéristiques cliniques des patients sont résumées dans le Tableau 1. Aux termes du protocole, les patients étaient tous des coronariens stables dont la FEVG était conservée à une valeur moyenne (± ET) de 58,7 ± 9,6 %. 10:00:26:07:12 Page 317 Tableau 1. l’étude 317 Caractéristiques des patients à leur entrée dans Les taux médians de MR-proANP, MR-proADM, CT-proET-1 et copeptine mesurés à l’entrée dans l’essai PEACE étaient respectivement de 90,45 pmol/l (25ème–75ème percentiles : 63,68–128,3 pmol/l), 0,53 nmol/l (25ème–75ème percentiles : 0,45–0,64 nmol/l), 47,82 pmol/l (25ème–75ème percentiles : 39,04–57,02 pmol/l) et 6,47 pmol/l (25ème–75ème percentiles : 0–10,67 pmol/l). Les taux tendaient à être supérieurs à ceux observés chez le sujet sain, mais, exception faite du taux de MR-proADM, la majorité des valeurs se situait en dessous du 97,5ème percentile rapporté dans les populations en bonne santé et en dessous des taux mesurés chez les patients atteints d’insuffisance cardiaque avérée (Tableau II du supplément de données uniquement disponible en ligne). Les caractéristiques des patients en fonction des quartiles de taux des marqueurs biologiques sont présentées dans les Tableaux III à VI du supplément de données uniquement disponible en ligne. De façon générale, l’élévation des taux de biomarqueurs du stress cardiovasculaire a été proportionnelle à l’âge, à la prévalence de l’hypertension artérielle et à l’altération du taux de filtration glomérulaire estimé. La FEVG s’est révélée inversement proportionnelle aux taux de MR-proANP et de copeptine, mais les différences absolues relevées entre les quartiles supérieur et inférieur de chacun de ces deux biomarqueurs n’ont été que de, respectivement, 2,0 et 1,0 %. Parmi les quatre marqueurs, seuls le MR-proADM et le CT-proET-1 ont présenté une corrélation relativement forte (r = 0,63) ; pour les deux autres, les corrélations ont été modérées à faibles (r ≤0,44 ; Tableau VII du supplément de données uniquement disponible en ligne). Page 318 318 Circulation Septembre 2012 Comme on pouvait s’y attendre, une puissante corrélation positive a été objectivée entre les taux de MR-proANP et de NT-proBNP (r = 0,76) ; en revanche, les liens qui unissaient le NT-proBNP et la TnTc aux autres marqueurs se sont révélés faibles (r ≤0,38 ; Tableau VII du supplément de données uniquement disponible en ligne). Evénements cibles cliniques Chez les patients de l’essai PEACE qui avaient reçu le placebo, les taux initiaux de chacun des quatre biomarqueurs du stress cardiovasculaire se sont montrés étroitement corrélés avec le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque (l’événement composite étant survenu chez 114 patients), chaque élévation de 1 ET du logarithme naturel des taux de marqueurs s’étant traduite par un quasi-doublement du risque (p ≤0,002 pour chaque marqueur biologique ; Tableau 2). Le risque a augmenté avec les quartiles, son niveau étant apparu particulièrement élevé pour le quatrième d’entre eux (Figure 1). Des liens similaires ont été relevés entre les taux de marqueurs biologiques et les risques spécifiques de décès de cause cardiovasculaire (survenu chez 67 patients) et d’insuffisance cardiaque (observée chez 56 patients ; Tableau VIII du supplément de données uniquement disponible en ligne). Après ajustement pour les facteurs de risque classiques, le taux de filtration glomérulaire attendu et la FEVG (se reporter à la rubrique « Méthodes » pour une description détaillée des covariables), l’élévation des taux de MRproANP, MR-proADM et CT-proET-1 est demeurée significativement corrélée avec l’augmentation du risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque, chaque élévation de 1 ET du logarithme naturel des taux de ces marqueurs ayant entraîné des augmentations du risque allant de 47 % à un taux près de deux fois supérieur (p ≤0,002 pour chaque marqueur biologique) ; dans l’analyse par quartile, le risque maximal a été observé chez les patients dont les taux se situaient dans le quartile le plus élevé ; les niveaux de risque ont, en effet, excédé de près du triple à plus de 5 fois ceux constatés chez les patients classés dans le quartile le plus faible. Toutefois, après ajustement multivarié, le lien relevé avec le taux de copeptine a perdu sa significativité (Tableau 3). Les mêmes corrélations que celles mises en évidence par les Tableau 2. 10:00:26:07:12 analyses non ajustées ont été observées entre les taux de biomarqueurs et les risques spécifiques de décès de cause cardiovasculaire et d’insuffisance cardiaque (Tableau VIII du supplément de données uniquement disponible en ligne). Comparativement à ceux relevés avec le décès de cause cardiovasculaire, les liens observés avec le décès lié à une quelconque cause, événement cible ayant une moindre spécificité cardiovasculaire, ont été significatifs mais plus faibles (Tableau IX du supplément de données uniquement disponible en ligne). Comme le laissaient prévoir de précédents travaux,6,26 les corrélations ajustées relevées entre les taux de ces nouveaux marqueurs biologiques du stress cardiovasculaire et les risques d’IDM aigu, d’accident vasculaire cérébral et de revascularisation coronaire se sont révélées non significatives, exception faite du lien entre le taux de MR-proANP et l’accident vasculaire cérébral (p = 0,043 ; Tableau IX du supplément de données uniquement disponible en ligne). Nous avions précédemment mesuré les taux de NT-proBNP et de TnTc dans cette même population ; le Tableau X du supplément de données uniquement disponible en ligne montre les liens mis en évidence entre ces biomarqueurs et le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque en employant un modèle ajusté pour les covariables cliniques mentionnées plus haut. Le classement des différents marqueurs en fonction de l’augmentation du risque (RR) engendrée par chaque élévation de 1 ET de leur taux s’est établi comme suit : MR-proANP (1,97), NT-proBNP (1,73), MR-proADM (1,48), CT-proET-1 (1,47) et TnTc (1,37). En raison de la corrélation relevée entre ces biomarqueurs et pour tenir compte du fait qu’aucun d’eux n’est encore dosé en routine dans cette population, nous avons eu recours à un algorithme de sélection par éliminations successives dénué de biais pour construire un modèle d’évaluation des différents marqueurs. Les deux seuls qui se sont révélés aptes à être inclus dans un modèle où figuraient déjà les covariables cliniques et qui n’en ont pas été secondairement écartés ont été le MR-proANP (RR ajusté : 1,79 ; intervalle de confiance [IC] à 95 % : 1,41 à 2,26 ; p <0,001) et le MR-proADM (RR ajusté : 1,27 ; IC à 95 % : 1,07 à 1,51 ; p = 0,007). L’incorporation du MR-proANP, du MR-proADM et du CT-proET-1 au modèle clinique séparément les uns des autres Liens relevés entre les taux de biomarqueurs et les événements cliniques dans le groupe placebo Page 318 Page 319 Sabatine et al Biomarqueurs du stress cardiovasculaire dans la maladie coronaire stable 319 Figure 1. Incidences cumulées de l’événement cible composite regroupant le décès de cause cardiovasculaire et l’insuffisance cardiaque chez les patients du groupe placebo (n = 1 868) de l’essai Prevention of Events With Angiotensin Converting Enzyme (PEACE), en fonction des quartiles des taux de fragments médians du propeptide natriurétique atrial (MR-proANP) et de la pro-adrénomédulline (MR-proADM), de fragment C-terminal de la pro-endothéline de type 1 (CT-proET-1) et de copeptine. Les valeurs de p sont celles fournies par le test des rangs logarithmiques effectué pour examiner la tendance inter-quartiles. Tableau 3. Liens multivariés relevés entre les taux de biomarqueurs et l’incidence des événements cliniques dans groupe placebo après ajustement pour les facteurs cliniques a significativement amélioré le pouvoir de discrimination (Tableau 4). En revanche, l’ajout de la copeptine ne s’est traduit par aucune amélioration du critère en question. L’inclusion conjointe des trois marqueurs biologiques dans le modèle clinique a fait passer la statistique C de 0,768 à 0,809 et a amélioré la discrimination intégrée de 4,6 % et la reclassification nette de 0,435 (p ≤0,0005 pour toutes les 10:00:26:07:12 Page 319 analyses). L’ajout du MR-proANP, du MR-proADM et du CT-proET-1 a été à l’origine d’améliorations uniformes et significatives de la statistique C dans les modèles multivariés qui prenaient déjà en compte les covariables cliniques et ce, que le NT-proBNP, la TnTc, ou les deux associés aient été ou non présents, eux aussi, dans le modèle ; en revanche, l’incorporation du NT-proBNP et de la TnTc à un modèle Page 320 320 Circulation Septembre 2012 Tableau 4. Influence des taux de biomarqueurs et des critères de discrimination et de reclassification dans le groupe placebo étaient augmentés (n = 472) ou que les trois étaient augmentés (n = 317) (Figure 2B). En dissociant les résultats, nous avons observé que, chez les 2 928 patients dont au plus un seul biomarqueur était augmenté (soit 79 % de la cohorte dans laquelle les biomarqueurs avaient été mesurés), l’administration de trandolapril n’avait pas eu d’impact bénéfique sur le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque (RR : 1,09 ; IC à 95 % : 0,74 à 1,59), alors que, chez les 789 sujets qui présentaient des élévations d’au moins deux biomarqueurs (21 % de la cohorte), elle a significativement diminué l’incidence de l’événement composite (RR : 0,53 ; IC à 95 % : 0,36 à 0,80 ; p = 0,002, pinteraction = 0,012 ; Figure 3). Dans ce dernier sous-groupe, la diminution du risque absolu sur 6 ans a atteint 7,5 %, ce qui signifie qu’il convient de traiter 14 patients du sous-groupe en question pendant 6 ans pour prévenir un décès de cause cardiovasculaire ou une hospitalisation pour insuffisance cardiaque. Discussion qui, outre les covariables cliniques, incluait le MR-proANP, le MR-proADM et le CT-proET-1 n’a pas entraîné d’amélioration de la statistique C (Tableau XI du supplément de données uniquement disponible en ligne). Interaction avec le traitement par le trandolapril Dans la cohorte totale, tous biomarqueurs confondus, l’administration de trandolapril a été associée à un RR de décès de cause cardiovasculaire ou d’insuffisance cardiaque chiffré à 0,80 (IC à 95 % : 0,61 à 1,05). Il importe toutefois de noter que, chez les patients dont le taux de MR-proANP, de MR-proADM ou de CT-proET-1 se situait dans le quartile le plus élevé et qui, de ce fait, étaient exposés au risque maximal de décès de cause cardiovasculaire ou d’insuffisance cardiaque sur la base de ces marqueurs biologiques, le trandolapril a entraîné une diminution significative de ce risque, comprise entre 34 et 44 %, alors qu’il n’a eu aucun effet bénéfique chez les patients qui encouraient des risques plus faibles (Figure 2A). En revanche, la prescription de trandolapril n’a entraîné aucune amélioration significative chez les patients dont le taux de NT-proBNP ou de TnTc se situait dans le quartile les plus élevé (Figure I du supplément de données uniquement disponible en ligne). Nous avons constaté un gradient de bénéfice exercé par le trandolapril (pinteraction = 0,016) chez les patients selon qu’ils ne présentaient aucune élévation des nouveaux biomarqueurs dont les analyses ajustées avaient montré qu’ils étaient corrélés avec le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque (n = 2 037), qu’un seul de ces marqueurs était augmenté (n = 891), que deux marqueurs 10:00:26:07:12 Page 320 Dans une analyse exploratoire effectuée sur une vaste cohorte de patients coronariens stables dont la FEVG était conservée, nous avons démontré que les élévations des taux de trois marqueurs biologiques du stress cardiovasculaire nouvellement décrits constituent des facteurs indépendants d’augmentation du risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque. De fait, un lien a pu être établi entre les taux de MR-proANP, MR-proADM et CT-proET-1 et le décès d’origine cardiovasculaire ou l’insuffisance cardiaque indépendamment des facteurs cliniques, de la fonction rénale et de la FEVG ; chaque élévation de 1 ET du logarithme naturel du taux de ces marqueurs s’est, en effet, traduite par une augmentation du risque variant de 47 % à près du double et, chez les patients dont les taux se situaient dans le quartile le plus élevé, le risque a augmenté à un niveau compris entre près du triple et plus du quintuple comparativement à celui observé chez les individus classés dans le quartile le plus faible. En revanche, un quatrième biomarqueur, la copeptine, n’a présenté aucun lien propre avec le risque d’événement cardiovasculaire. Surtout, et contrairement à ce qui avait été précédemment rapporté pour d’autres marqueurs, dont le NT-proBNP et la TnTc,6,26,31 l’existence d’une élévation d’un ou plusieurs des trois biomarqueurs mentionnés a constitué un élément de caractérisation des patients chez lesquels l’administration d’un IEC a significativement réduit le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque, alors même que, sur la base des critères cliniques, ils paraissaient n’encourir qu’un faible risque. Nous n’avons pas directement mesuré les taux d’ANP, d’ADM et d’ET-1, mais ceux de leurs prohormones, car celles-ci sont libérées en proportion équimolaire par rapport aux hormones vasoactives mais ont une demi-vie plus longue. Par ailleurs, lorsque cela était possible, nous avons préféré doser le taux de fragment médian, car ce dernier est plus stable in vivo et ex vivo que les portions amino- et carboxyterminales de la prohormone, ce qui minimise le risque de sous-estimation des taux lié à la dégradation précoce des épitopes majeurs situés aux deux extrémités de la molécule.32 Page 321 Sabatine et al Biomarqueurs du stress cardiovasculaire dans la maladie coronaire stable 321 Figure 2. Effets bénéfiques exercés par le trandolapril sur le risque de survenue de l’événement cible composite regroupant le décès de cause cardiovasculaire (CV) et l’insuffisance cardiaque chez les 3 717 patients de l’essai Prevention of Events With Angiotensin Converting (PEACE) en fonction de leurs taux de biomarqueurs du stress cardiovasculaire. En A, une distinction a été opérée entre les patients selon que leurs taux de biomarqueurs du stress cardiovasculaire se situaient dans le quartile le plus élevé (quartile 4) ou dans les quartiles inférieurs (quartiles 1 à 3). Les valeurs p afférentes à l’interaction ont été de 0,16 pour le taux de fragment médian du propeptide natriurétique atrial (MR-proANP), de 0,02 pour le taux de fragment médian de la pro-adrénomédulline (MR-proADM), de 0,09 pour le taux de fragment Cterminal de la pro-endothéline de type 1 (CT-proET-1) et de 0,72 pour le taux de copeptine. En B, les patients ont été classés en fonction du nombre de biomarqueurs (MR-proANP, MR-proADM et CT-proET-1) qui se situaient dans le quartile le plus élevé ; la valeur p afférente à l’interaction a été de 0,016. En A et B, les losanges figurent l’effet exercé dans la cohorte totale, tous biomarqueurs confondus, le centre des losanges représentant le risque relatif estimé et les extrémités gauche et droite l’intervalle de confiance (IC) à 95 %. Les carrés et les cercles figurent les risques relatifs estimés et les traits horizontaux les IC à 95 % afférents à l’effet exercé dans chaque sous-groupe. RR : risque relatif. Figure 3. Incidences cumulées de l’événement cible composite regroupant le décès de cause cardiovasculaire (CV) et l’insuffisance cardiaque chez les 3 717 patients de l’essai Prevention of Events With Angiotensin Converting Enzyme (PEACE) selon qu’il ne présentaient pas plus d’un biomarqueur dont le taux était augmenté (courbes continues ; la courbe en rouge correspond aux 1 487 patients du groupe placebo et la courbe en bleu aux 1 441 patients traités par le trandolapril) ou que les élévations concernaient deux marqueurs ou plus (courbes en pointillés ; la courbe en rouge correspond aux 381 patients du groupe placebo et la courbe en bleu aux 408 patients traités par le trandolapril). RR : risque relatif ; IC : intervalle de confiance. Dans des études menées chez des patients atteints d’insuffisance cardiaque documentée, l’élévation des taux de MR-proANP, MR-proADM et CT-proET-1 s’est montrée corrélée avec la mortalité indépendamment des paramètres cliniques, ces biomarqueurs biologiques ayant, de plus, fait preuve d’une valeur pronostique et d’un pouvoir 10:00:26:07:12 Page 321 discriminatoire qui soutiennent avantageusement la comparaison avec ceux du BNP et/ou du NT-proBNP.13–15 En accord avec ces observations, à l’analyse de notre série de données, nous avons constaté que, dans le modèle ajusté en fonction des facteurs cliniques que nous avions construit pour évaluer les différents biomarqueurs, le MR-proANP et Page 322 322 Circulation Septembre 2012 le MR-proADM avaient été ceux pour lesquels les corrélations avaient été les plus puissantes, celles-ci s’étant révélées supérieures à celles observées pour le NT-proBNP et pour la TnTc mesurée par une méthode hautement sensible. Dans la mesure où notre étude avait un fondement clinique plutôt que mécaniste, nous ne pouvons que spéculer sur les raisons de cette supériorité, qui peut notamment tenir à de discrètes différences dans les voies physiopathologiques qui sous-tendent l’élévation des taux de chacun de ces biomarqueurs ou aux propriétés analytiques plus favorables et qui, donc, permettent mieux de dépister les troubles cardiovasculaires infracliniques. Cela étant, nos données corroborent et prolongent par plusieurs aspects les observations rapportées par Schnabel et al7 sur ces marqueurs biologiques et leurs relations avec l’athérosclérose ; elles portent, en effet, sur des patients qui n’étaient pas insuffisants cardiaques à leur entrée dans l’étude et dont les FEVG étaient connues et ont été incluses dans tous les modèles multivariés ; notre cohorte de patients avait, en outre, pour origine un nombre beaucoup plus élevé de centres cliniques et nous avons spécifiquement axé nos analyses sur les événements cliniques que les biomarqueurs du stress cardiovasculaire sont le mieux à même de prédire, à savoir le décès de cause cardiovasculaire et l’insuffisance cardiaque, plutôt que sur un événement composite incluant le décès ou l’IDM. Elément fondamental, alors que les précédentes analyses de marqueurs biologiques avaient été incluses dans des études de cohortes observationnelles, nous avons eu la faculté d’étudier les présents marqueurs dans le cadre d’un essai clinique randomisé, ce qui nous a permis d’examiner l’interaction entre leurs taux initiaux et l’efficacité du traitement assigné par la randomisation en nous exonérant du biais inhérent à l’évaluation de traitements alloués de façon non randomisée. En nous appuyant sur plusieurs de ces nouveaux biomarqueurs du stress cardiovasculaire, nous avons pu établir que, chez près du cinquième des patients coronariens stables de l’essai, l’administration d’un IEC avait pratiquement réduit de moitié le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque. Nos résultats rejoignent conceptuellement les observations de Richards et al,33,34 qui avaient montré que la présence de taux augmentés de biomarqueurs du stress cardiovasculaire permet d’identifier les patients présentant une dysfonction ventriculaire gauche d’origine ischémique chez lesquels l’administration d’un bêtabloquant est bénéfique. Selon les actuelles recommandations en matière de prise en charge des patients coronariens stables, la prescription d’un IEC est conseillée chez ceux dont la FEVG est inférieure à 40 % ; de plus, en partie en raison des données de l’essai HOPE (Heart Outcomes Prevention Evaluation [étude sur la prévention des événements cardiaques]), les IEC sont également recommandés chez les patients exposés à un risque relativement élevé et/ou qui relèvent d’une autre indication clinique majeure (telle que la présence d’une hypertension artérielle, d’un diabète ou d’une néphropathie chronique).35 En revanche, chez les patients qui encourent un risque moins important, comme cela était le cas de ceux de l’essai PEACE, dans lequel le taux d’événements enregistré dans le groupe placebo a été inférieur à celui observé dans le groupe de l’essai 10:00:26:07:12 Page 322 HOPE qui avait reçu l’IEC, les recommandations stipulent qu’il est licite, sans que cela soit expressément requis, de prescrire un IEC dès lors que les facteurs de risque cardiovasculaire sont bien contrôlés et qu’une revascularisation a été pratiquée. Nos présentes données confortent l’hypothèse selon laquelle, dans cette population extrêmement vaste de patients qui, cliniquement, paraissent encourir un risque moindre, le dosage des taux de biomarqueurs du stress cardiovasculaire pourrait être un utile auxiliaire pour décider de l’attitude à adopter. Bien que d’autres études prospectives doivent être entreprises si la mesure de ces marqueurs biologiques venait à entrer dans la pratique clinique courante aux Etats-Unis, l’attitude consistant à asseoir le choix du traitement médicamenteux à long terme sur une série de biomarqueurs serait sans doute intéressante en termes de rapport coût/efficacité. Notre étude présente plusieurs limites potentielles qu’il convient d’examiner. La cohorte de l’essai clinique PEACE, qui était principalement constituée d’hommes blancs âgés de plus de 50 ans, n’est nullement représentative de la population générale. Pour autant, les caractéristiques cliniques des patients inclus dans notre étude sont celles classiquement observées chez les individus atteints d’une maladie coronaire stable ; de plus, beaucoup de ces patients recevaient des bêtabloquants et des hypolipémiants. Les prélèvements sanguins ont été uniquement effectués dans un sous-groupe de participants à l’essai principal PEACE ; toutefois, il n’existait pas de différence cliniquement significative entre les patients inclus dans notre sous-étude sur les marqueurs biologiques et ceux qui n’y ont pas pris part. Bien que nous ayons utilisé des échantillons biologiques stockés, l’éventuelle dégradation de certains de ces échantillons ne pouvait qu’avoir un caractère aléatoire quant à son influence sur les événements cardiovasculaires, de sorte que les erreurs de classement qui en auraient découlé auraient uniquement biaisé les résultats dans le sens de l’hypothèse nulle. L’élaboration du score fondé sur les différents marqueurs pour évaluer l’interaction avec le traitement doit être considérée comme exploratoire, car la combinaison optimale de biomarqueurs et les valeurs seuils de ces derniers demandent à être validées dans d’autres populations. L’insuffisance cardiaque ne constituait pas un élément du critère de jugement principal prédéfini dans le plan d’organisation de l’essai originel ; elle représente néanmoins un type d’événement dont il a été clairement établi, dans d’autres populations, que sa survenue peut être anticipée par la mesure des taux de biomarqueurs du stress cardiovasculaire et prévenue par l’administration d’un IEC.6,19,20,26 Conclusion Chez les patients apparemment exposés à un faible risque qui présentent une maladie coronaire stable avec conservation de la FEVG, la mise en évidence de taux augmentés des nouveaux biomarqueurs du stress cardiovasculaire peut permettre de dépister ceux d’entre eux qui encourent un risque plus élevé de décès de cause cardiovasculaire ou d’insuffisance cardiaque et, par ailleurs, d’identifier ceux chez lesquels la prescription d’un IEC serait hautement bénéfique. Page 323 Sabatine et al Biomarqueurs du stress cardiovasculaire dans la maladie coronaire stable Sources de financement L’essai PEACE a été financé par le National Heart, Lung, and Blood Institute des Etats-Unis (NHLBI ; contrat N01 HC65149) ainsi que par Knoll Pharmaceuticals et Abbott Laboratories, qui ont également fourni le médicament de l’étude. Le travail du Dr Sabatine a été en partie financé par une bourse R01 HL094390 du NHLBI. Les réactifs utilisés pour les dosages du MR-proANP, du MR-proADM, du CT-proET-1 et de la copeptine ont été fournis par B.R.A.H.M.S. Gmbh (Henningsdorf, Allemagne). Le NHLBI, Knoll Pharmaceuticals, Abbott Laboratories et B.R.A.H.M.S. GmbH se sont abstenus de toute intervention dans la conception et la conduite de l’étude ; ils n’ont pas davantage joué de rôle dans le recueil, le traitement, l’analyse et l’interprétation des données ni dans la préparation, la révision et l’approbation du présent manuscrit. Déclarations 5. 6. 7. Les Drs Sabatine, Morrow et Braunwald ainsi que S. Sloan sont membres du groupe d’étude TIMI, auquel des bourses de recherche ont été octroyées par Accumetrics, Amgen, AstraZeneca, Beckman Coulter, BG Medicine, B.R.A.H.M.S. GmbH, Bristol-Myers Squibb, CV Therapeutics, Daiichi Sankyo Co Ltd, diaDexus, Eli Lilly & Co, Genentech, GlaxoSmith-Kline, Integrated Therapeutics, Johnson & Johnson, Merck & Co, Nanosphere, Novartis Pharmaceuticals, Nuvelo, Ortho-Clinical Diagnostics, Pfizer, Roche Diagnostics, Sanofi-Aventis, Siemens et Singulex. Le Dr Sabatine a été rémunéré pour des conférences de FMC par Bristol-Myers Squibb et diaDexus et a perçu des honoraires en qualité de consultant d’AstraZeneca, Bristol-Myers Squibb/Sanofi-Aventis Joint Venture, Daiichi-Sankyo/ Lilly Partnership, Sanofi-Aventis et Singulex. Le Dr Morrow a été rémunéré pour des conférences de FMC par Eli Lilly, en qualité de consultant par Beckman-Coulter, Boehringer Ingelheim, Cardiokinetix, Critical Diagnostics, Gilead, Instrumentation Laboratory, Ikaria, Menarini, Merck, OrthoClinical Diagnostics, Servier, Roche Diagnostics et Siemens et en tant que membre d’un comité d’adjudication des événements cliniques par AstraZeneca. Le Dr de Lemos a bénéficié de dotations émanant de Roche et d’Alere Inc. (anciennement Biosite) et a été rémunéré en qualité de consultant par Alere, Johnson & Johnson Roche Diagnostics et Tethys Biomedical. Le Dr Omland a été rémunéré en qualité de conférencier par Roche Diagnostics et Abbott Laboratories. Le Dr Jarolim a bénéficié de bourses de recherche octroyées par Amgen, Beckman-Coulter, Ortho Clinical Diagnostics, Roche Diagnostics et Siemens Healthcare Diagnostics ; il a été rémunéré pour des conférences de FMC par Ortho Clinical Diagnostics et en qualité de consultant par T2 Biosystems. Le Dr Pfeffer a bénéficié de dotations émanant d’Amgen, Novartis et Sanofi-Aventis et a été rémunéré en qualité de consultant par Amgen, Anthera, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cerenis, Eleven Biotherapeutics, GlaxoSmithKline, Hamilton Health Sciences, Karo Bio, Novartis, Roche, Salutria, Sanofi Aventis, Servier et l’Université d’Oxford. Le Dr Pfeffer est également co-détenteur avec le Brigham and Women’s Hospital d’un brevet portant sur l’utilisation des inhibiteurs du système rénine-angiotensine chez des patients sélectionnés ayant survécu à un IDM. Les parts qu’il possède dans des accords de licence avec Novartis et Boehringer (et dont les revenus sont systématiquement reversés à des organismes caritatifs) sont sans lien avec l’activité commerciale. Le Dr Braunwald a été rémunéré pour sa participation à des colloques et/ou en tant que consultant par Amorcyte, CardioRentis, CVRx, Daiichi Sankyo, Eli Lilly, Genzyme, Medicines Co et Merck & Co. Les autres auteurs n’ont aucun conflit d’intérêts à signaler. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. Références 1. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358: 2148–2159. 2. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655–663. 3. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, 10:00:26:07:12 4. Page 323 20. 323 Venge P, Arnlov J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358: 2107–2116. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, Hall C, Cannon CP, Braunwald E. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014–1021. Morrow DA, de Lemos JA, Blazing MA, Sabatine MS, Murphy SA, Jarolim P, White HD, Fox KA, Califf RM, Braunwald E. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA. 2005;294: 2866–2871. Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, Landaas S, Rouleau JL, Domanski MJ, Hall C, Pfeffer MA, Braunwald E. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol. 2007;50:205–214. Schnabel RB, Schulz A, Messow CM, Lubos E, Wild PS, Zeller T, Sinning CR, Rupprecht HJ, Bickel C, Peetz D, Cambien F, Kempf T, Wollert KC, Benjamin EJ, Lackner KJ, Munzel TF, Tiret L, Vasan RS, Blankenberg S. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J. 2010;31:3024– 3031. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–328. Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJ. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004;103:179–201. Jougasaki M, Stevens TL, Borgeson DD, Luchner A, Redfield MM, Burnett JC Jr. Adrenomedullin in experimental congestive heart failure: cardiorenal activation. Am J Physiol. 1997;273:R1392–R1399. Spieker LE, Noll G, Ruschitzka FT, Luscher TF. Endothelin receptor antagonists in congestive heart failure: a new therapeutic principle for the future? J Am Coll Cardiol. 2001;37:1493–1505. Finley JJ 4th, Konstam MA, Udelson JE. Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation. 2008;118:410–421. Moertl D, Berger R, Struck J, Gleiss A, Hammer A, Morgenthaler NG, Bergmann A, Huelsmann M, Pacher R. Comparison of midregional proatrial and B-type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J Am Coll Cardiol. 2009;53:1783–1790. von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, Rozentryt P, Vassanelli C, Struck J, Banasiak W, Ponikowski P, Kremastinos D, Bergmann A, Morgenthaler NG, Anker SD. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484–491. Jankowska EA, Filippatos GS, von Haehling S, Papassotiriou J, Morgenthaler NG, Cicoira M, Schefold JC, Rozentryt P, Ponikowska B, Doehner W, Banasiak W, Hartmann O, Struck J, Bergmann A, Anker SD, Ponikowski P. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1. PLoS One. 2011;6:e14506. Stoiser B, Mortl D, Hulsmann M, Berger R, Struck J, Morgenthaler NG, Bergmann A, Pacher R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006;36:771–778. Garg R, Yusuf S. Overview of randomized trials of angiotensinconverting enzyme inhibitors on mortality and morbidity in patients with heart failure: Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–1456. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97:2202–2212. Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–153. European Trial on Reduction of Cardiac Events With Perindopril in Stable Coronary Artery Disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–788. Page 324 324 Circulation Septembre 2012 21. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Rouleau JL; PEACE Trial Investigators. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058–2068. 22. Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin Chem. 2004;50:234–236. 23. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005;51:1823–1829. 24. Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A. Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin Chem. 2006;52: 1144–1151. 25. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–119. 26. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538–2547. 27. Guilford JP. Fundamental Statistics in Psychology and Education. New York, NY: McGraw Hill; 1956. 28. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27: 157–172. 29. Harrell FE. Harrell Miscellaneous. R Graphical Manual. December 26, 2008. http://biostat.mc.vanderbilt.edu/s/Hmisc. 2009. Accessed December 16, 2010. 30. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21. 31. Sabatine MS, Morrow DA, Jablonski KA, Rice MM, Warnica JW, Domanski MJ, Hsia J, Gersh BJ, Rifai N, Ridker PM, Pfeffer MA, Braunwald E. Prognostic significance of the Centers for Disease Control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. Circulation. 2007;115:1528–1536. 32. Ala-Kopsala M, Magga J, Peuhkurinen K, Leipala J, Ruskoaho H, Leppaluoto J, Vuolteenaho O. Molecular heterogeneity has a major impact on the measurement of circulating N-terminal fragments of A- and B-type natriuretic peptides. Clin Chem. 2004;50:1576–1588. 33. Richards AM, Doughty R, Nicholls MG, Macmahon S, Ikram H, Sharpe N, Espiner EA, Frampton C, Yandle TG. Neurohumoral prediction of benefit from carvedilol in ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. Circulation. 1999;99:786–792. 34. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction: Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37:1781–1787. 35. Fraker TD Jr, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, Ferguson TB Jr, Fihn SD, Fraker TD Jr, Gardin JM, O’Rourke RA, Williams SV, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Page RL, Riegel B, Tarkington LG, Yancy CW. 2007 Chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. Circulation. 2007;116:2762–2772. PERSPECTIVE CLINIQUE Les avis demeurent partagés quant à l’impact bénéfique des inhibiteurs de l’enzyme de conversion de l’angiotensine chez les patients à faible risque qui présentent une maladie coronaire stable mais sont indemnes d’insuffisance cardiaque ; cela étant, les actuelles recommandations stipulent qu’il est licite, sans que cela soit expressément requis, de prescrire un tel médicament dès lors que les facteurs de risque cardiovasculaire sont bien contrôlés et qu’une revascularisation a été pratiquée. Dans la présente étude, nous démontrons que l’élévation des taux de trois nouveaux biomarqueurs du stress cardiovasculaire, à savoir les fragments médians du propeptide natriurétique atrial et de la pro-adrénomédulline et le fragment C-terminal de la pro-endothéline de type 1, contribue à augmenter le risque de décès de cause cardiovasculaire et d’insuffisance cardiaque indépendamment des facteurs cliniques (les risques relatifs ajustés par élévation de 1 ET du taux mesuré ayant été respectivement estimés à 1,97, 1,48 et 1,47 ; p ≤0,002 pour chaque marqueur biologique). De plus, l’existence d’une élévation d’un ou plusieurs des trois biomarqueurs mentionnés est apparue comme un élément de caractérisation des patients chez lesquels l’administration d’un inhibiteur de l’enzyme de conversion de l’angiotensine a significativement réduit le risque de décès de cause cardiovasculaire ou d’insuffisance cardiaque. Plus précisément, l’administration de trandolapril a significativement abaissé le risque en question chez les patients dont les taux d’au moins deux marqueurs étaient augmentés (risque relatif : 0,53 ; intervalle de confiance à 95 % : 0,36 à 0,80), alors qu’il n’a eu aucune influence bénéfique en l’absence d’élévation de ces biomarqueurs ou lorsque le taux d’un seul d’entre eux était augmenté (risque relatif : 1,09 ; intervalle de confiance à 95 % : 0,74 à 1,59 ; pinteraction = 0,012). Il apparaît donc que, chez les patients coronariens stables dont la FEVG est conservée, la mise en évidence de taux augmentés des nouveaux biomarqueurs du stress cardiovasculaire permet de dépister ceux d’entre eux qui encourent un risque plus élevé de décès de cause cardiovasculaire ou d’insuffisance cardiaque et, par ailleurs, d’identifier ceux chez lesquels la prescription d’un inhibiteur de l’enzyme de conversion de l’angiotensine serait hautement bénéfique. 10:00:26:07:12 Page 324