Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
OPCOP 2017, Peter Dragnev, IPFW Logarithmic and Riesz Equilibrium for Multiple Sources on the Sphere — the Exceptional Case P. D. Dragnev∗ Indiana University-Purdue University Fort Wayne (IPFW) ∗ with J. Brauchart - TU Graz, E. Saff - Vanderbilt, R. Womersley - UNSW OPCOP 2017, Peter Dragnev, IPFW Outline • OPC, OP and external field problems in C • OPC on Sd - why minimize energy? • OPC separation - external field on Sd • Multiple sources Log external fields on S2 • Multiple sources (d − 2)-external fields on Sd OPCOP 2017, Peter Dragnev, IPFW OPC, OP and external field problems in C Classical energy problems • Electrostatics - capacity, equilibrium measures; • Geometry - transfinite diameter (OPC); • Polynomials - Chebyshev constant (OP) • Classical theorem in potential theory External field problems • Characterization theorem of weighted equilibrium • Examples • Applications to orthogonal polynomials on the real line Constrained energy problems • Characterization theorem of constrained equilibrium • Examples • Applications to discrete orthogonal polynomials OPCOP 2017, Peter Dragnev, IPFW Classical energy problem and equilibrium measure Electrostatics - capacity of a conductor cap(E) E - compact set in C, µ ∈ M(E) - probability measure on E; Equilibrium occurs when potential (logarithmic) energy I(µ) is minimized. Z Z VE := inf{I(µ) := − log |x−y | dµ(x)dµ(y )}, cap(E) := exp(−VE ) Remark: For Riesz energy we use Riesz kernel |x − y |−s instead. Equilibrium measure µE If cap(E) > 0, there exists unique R µE : I(µE ) = VE . Potential satisfies U µE (x) = − log |x − y | dµ(y ) = C on E. Examples • E = T, dµE = dθ/(2π) √ • E = [−1, 1], dµE = dx/π 1 − x 2 OPCOP 2017, Peter Dragnev, IPFW Classical theorem in potential theory Geometry - transfinite diameter of a set δ(E) E ⊂ C - compact, Zn = {z1 , z2 , . . . , zn } ⊂ of E maximize Vandermond Fekete points (OPC) 2/(n(n−1)) δn (E) := max Zn ⊂E Y |zi − zj | , δ(E) := lim δn (E) 1≤i<j≤n Approximation Theory - Chebyshev constant τ (E) E - compact set in C, Tn (x) - monic polynomial of minimal uniform norm (OP for L2 -norm); tn (E) := min{kx n − pn−1 (x)k : pn−1 ∈ Pn−1 }, τ (E) = lim tn 1/n (E) Classical theorem (Fekete, Szegö) cap(E) = δ(E) = τ (E) OPCOP 2017, Peter Dragnev, IPFW External field problem - characterization theorem Electrostatics - add external field E - closed set in C, Q - lower semi-continuous on E (growth cond.); Z VQ := inf{IQ (µ) := I(µ) + 2 Q(x) dµ(x) Theorem - Weighted equilibrium µQ There exists unique µQ : IQ (µQ ) = VQ . Potential satisfies: U µQ (x) + Q(x) ≥ C q.e. on E U µQ (x) + Q(x) ≤ C on supp(µQ ). Applications • Orthogonal polynomials on real line • Approximation of functions by weighted polynomials • Integrable systems, Random matrices OPCOP 2017, Peter Dragnev, IPFW Constrained energy problem Electrostatics - add external field and upper constraint Add constraint measure σ: σ(E) > 1 VQσ := inf{IQ (µ) := I(µ) + 2 Z Q(x) dµ(x) : µ ≤ σ Applications: Discrete orthogonal polynomials, random walks, numerical linear algebra methods, etc. Theorem (R ’96, Saff-D. ’97) - Constrained equilibrium λσQ There exists unique λσQ : IQ (λσQ ) = VQσ . σ Potential satisfies: U λQ (x) + Q(x) ≥ C on supp(σ − λσQ ) σ U λQ (x) + Q(x) ≤ C on supp(µ). Theorem (Saff-D. ’97) - Constrained vs. weighted equilibrium If Q ≡ 0, then σ − λσ = (kσk − 1)µQ for Q(x) = −U σ (x)/(kσk − 1) OPCOP 2017, Peter Dragnev, IPFW OPC on S2 - why minimize energy? Electrostatics: Thomson Problem (1904) (“plum pudding” model of an atom) Find the (most) stable (ground state) energy configuration (code) of N classical electrons (Coulomb law) constrained to move on the sphere S2 . Generalized Thomson Problem (1/r s potentials and log(1/r )) A code C := {x1 , . . . , xN } ⊂ Sn−1 that minimizes Riesz s-energy Es (C) := X j6=k 1 s, |xj − xk | s > 0, is called an optimal s-energy code. Elog (ωN ) := X j6=k log 1 |xj − xk | OPCOP 2017, Peter Dragnev, IPFW OPC on S2 - why minimize energy? Coding: Tammes Problem (1930) A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following. Tammes Problem (Best-Packing, s = ∞) Place N points on the unit sphere so as to maximize the minimum distance between any pair of points. Definition Codes that maximize the minimum distance are called optimal (maximal) codes. Hence our choice of terms. OPCOP 2017, Peter Dragnev, IPFW OPC on S2 - why minimize energy? Nanotechnology: Fullerenes (1985) - (Buckyballs) Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O’Brian discovered C60 (Chemistry 1996 Nobel prize) Duality structure: 32 electrons and C60 . OPCOP 2017, Peter Dragnev, IPFW Other "Fullerenes" Under the lion paw Montreal biosphere OPCOP 2017, Peter Dragnev, IPFW Computational "Fulerene" - Rob Womersley OPCOP 2017, Peter Dragnev, IPFW Known OPC on S2 Recall: Riesz Oprimal Configurations A configuration ωN := {x1 , . . . , xN } ⊂ Sd that minimizes Riesz s-energy Es (ωN ) := X j6=k 1 s, |xj − xk | s > 0, E0 (ωN ) := X log j6=k 1 |xj − xk | is called an optimal s-energy configuration. OPC on S2 • s = 0, Smale’s problem, logarithmic points (known for N = 1 − 6, 12); • s = 1, Thomson Problem (known for N = 1 − 6, 12) • s = −1, Fejes-Toth Problem (known for N = 1 − 6, 12) • s → ∞, Tammes Problem (known for N = 1 − 12, 13, 14, 24) OPCOP 2017, Peter Dragnev, IPFW OPC separation on Sd and external fields Separation Distance δ(ωN ) := min |xj − xk | , j6=k (s) ωN = {x1 , . . . , xN } (s) Expect: δ(ωN ) N −1/d as N → ∞, where ωN optimal for Sd Definition d A sequence of N-point configurations {ωN }∞ N=2 ⊂ S is well-separated if there exists some c > 0 not depending on N s.t. δ(ωN ) ≥ c N −1/d for all N. OPCOP 2017, Peter Dragnev, IPFW OPC separation on Sd and external fields Separation Results for Optimal Point Configurations on Sd d = 2, s = 0 0 < s< d −2 s =d −1 d −1≤s <d d −2 ≤ s< d s= d s>d s=∞ (0) δ(ωN ) ≥ O(N −1/2 ) (s) δ(ωN ) ≥? (d−1) δ(ωN ) ≥ O(N −1/d ) (s) δ(ωN ) ≥ O(N −1/d ) (s) δ(ωN ) ≥ βs,d N −1/d (d) −1/d δ(ωN ) ≥ O((N log N) ) (s) δ(ωN ) ≥ O(N −1/d ) (∞) δ(ωN ) ≥ O(N −1/d ) Asymptotic Results (H-vdW (1951), Bo-H-S (2007)) R-S-Z (1995) Dahlberg (1978) K-S-S (2007) D-S (2007) K-S (1998) K-S (1998) Conway-Sloane OPCOP 2017, Peter Dragnev, IPFW Logarithmic Points on S2 and external field Separation Results for Logarithmic Configurations on S2 √ (0) δ(ωN ) ≥ (3/5)/ N √ (0) δ(ωN ) ≥ (7/4)/ N √ (0) δ(ωN ) ≥ 2/ N − 1 R-S-Z (1995) Dubickas (1997) D. (2002) OPCOP 2017, Peter Dragnev, IPFW Logarithmic Points on S2 and external field Separation Results for Logarithmic Configurations on S2 √ (0) δ(ωN ) ≥ (3/5)/ N √ (0) δ(ωN ) ≥ (7/4)/ N √ (0) δ(ωN ) ≥ 2/ N − 1 R-S-Z (1995) Dubickas (1997) D. (2002) Proof. • R-S-Z, Dubickas: Stereographical projection with South Pole in ωN . • Dragnev: Stereographical projection with North Pole in ωN . This creates external field on projections of remaining N − 1 points {zk }. All weighted Fekete √ points are contained in support of continuous MEP, i.e. |zk | ≤ N − 2, which implies estimate. OPCOP 2017, Peter Dragnev, IPFW OPC separation on Sd and external fields Approach for Sd (s) • Fix a point of ωN and consider external field QN it generates on the remaining n = N − 1 points. • Study continuous energy problem for this external field QN . • Discrete energy points for QN are contained in CEP equilibrium support. Theorem (D-Saff 2007) OPC separation on Sd for d − 2 ≤ s < d 1/d Ks,d 2B(d/2, 1/2) (s,d) δ(ωN ) ≥ 1/d , Ks,d := , B(d/2, (d − s)/2) N where B(x, y ) denotes the Beta function. In particular, p Kd−1,d = 21/d , Ks,2 = 2 1 − s/2. Remark: We need Principle of Domination, de la Valleè-Pousin type theorem, and Riesz balayage, hence the restriction on s. OPCOP 2017, Peter Dragnev, IPFW Discrete MEP on Sd for d − 2 ≤ s < d Q-optimal points Let Q be an external field. Find Q-optimal configuration of n points on Sd , that solve n X 1 d min + Q(x ) + Q(x ) : x ∈ S k j k s |xj − xk | j6=k Q(x) = q |x − Rp|s 2007 Separation: q = 1/(N − 2), R = 1, n = N − 1. OPCOP 2017, Peter Dragnev, IPFW Discrete MEP on Sd for d − 2 ≤ s < d Q-optimal points Let Q be an external field. Find Q-optimal configuration of n points on Sd , that solve n X 1 d min + Q(x ) + Q(x ) : x ∈ S j k k s |xj − xk | j6=k Q(x) = q |x − Rp|s Key idea: 2007 Separation: q = 1/(N − 2), R = 1, n = N − 1. OPCOP 2017, Peter Dragnev, IPFW Discrete MEP on Sd for d − 2 ≤ s < d Q-optimal points Let Q be an external field. Find Q-optimal configuration of n points on Sd , that solve n X 1 d min + Q(x ) + Q(x ) : x ∈ S j k k s |xj − xk | j6=k Q(x) = q |x − Rp|s 2007 Separation: q = 1/(N − 2), R = 1, n = N − 1. Key idea: Theorem Q-optimal points are contained in supp(µQ ). OPCOP 2017, Peter Dragnev, IPFW External field Continuous MEP on Sd for d − 2 ≤ s < d K ⊂ Sd compact; M(K ) class of positive unit Borel measures µ supported on K Z Z Z −s −s µ Us (x):= |x − y| d µ(y) Is [µ]:= |x − y| d µ(x) d µ(y) Riesz s-potential of µ Riesz s-energy of µ Ws (K ) := inf {Is [µ] : µ ∈ M(K )} Riesz s-energy of K Extremal measure Given an external field Q on K , there exists unique extremal measure µQ that minimizes the weighted energy Z Is [µ] + 2 Q d µ, µ ∈ M(K ), characterized by Usµ (x) + Q(x) ≥ C on Sd with "=" on supp(µQ ). OPCOP 2017, Peter Dragnev, IPFW Physicist’s Problem (Signed Equilibrium) Given compact K ⊂ Sd , Q external field on K , find a signed measure ηQ s.t. UsηQ (x) + Q(x) = const. everywhere on K ηQ (K ) = 1 Definition ηQ = ηQ,K is called signed equilibrium on K associated with Q. Proposition If ηQ exists, then it is unique. Theorem − + + Let ηQ,K = ηQ,K − ηQ,K . Then supp(µQ,K ) ⊆ supp(ηQ,K ) OPCOP 2017, Peter Dragnev, IPFW Mhaskar-Saff Fs -functional and signed equilibrium Definition (Fs -Mhaskar-Saff functional for general Q) Z Fs (K ) := Ws (K ) + Q d µK , Ws (K ) is s-energy of K . Theorem If d − 2 ≤ s < d with s > 0, then Fs is minimized for SQ := supp(µQ ). Proposition (Connection to signed equilibrium) If d − 2 ≤ s < d with s > 0, Q : K → R continuous and Ws (K ) < ∞, η then Us Q,K + Q ≡ Fs (K ) on K . OPCOP 2017, Peter Dragnev, IPFW Example (Brauchart-Saff-D., 2009) Η-Q Η+Q t K = Sd , s Qa (x) = q/ |x − a| , R = |a| ≥ 1 − + η Qa = η Q − ηQ a a Let Σt be spherical cap centered at South Pole of height −1 ≤ t ≤ 1 − + supp(ηQ ) = Σt(Qa ) , supp(ηQ ) = Sd \ Σt(Qa ) . a a Remark + If ηQa ≥ 0, then µQa = ηQa . If not, then supp(µQa ) ⊆ supp(ηQ ). a OPCOP 2017, Peter Dragnev, IPFW Finding µQa when supp(µQa ) = Sd ; BDS ’09 Gonchar’s Problem for Sd Let q = 1, s = d − 1 (Newton potential). Find R0 > 0 s.t. for Qa (x) = |x − a|1−d , a = Rp ( = Sd if R ≥ R0 , supp(µQa ) ( Sd if R < R0 . Proposition For s = d − 1, " d ηQa (x) = 1 + 1 R d−1 − R2 − 1 |x − a| d+1 # d σd (x) √ 1+ 5 If d = 2, then R0 − 1 = . When d = 4, R0 − 1 = Plastic 2 number from architecture (see Padovan sequence Pn+3 = Pn+1 + Pn ). OPCOP 2017, Peter Dragnev, IPFW Finding µQa when supp(µQa ) ( Sd ; BDS ’09 Theorem s Let d − 2 ≤ s < d. Qa (x) = q/ |x − a| . Signed equilibrium on Σt is ηt := ηQa ,Σt = t = Bals (δa , Σt ), 1 + qkt k ν t − q t , kνt k νt = Bals (σd , Σt ). The weighted s-potential is Usηt (z) + Qa (z) = Fs (Σt ) Usηt (z) on Σt , + Qa (z) = Fs (Σt ) + · · · on Sd \ Σt . The equilibrium measure µQa = ηt0 , where t = t0 (by minimizing Fs -functional) is the unique solution of d−s Ws (Sd ) 1 + q kt k q (R + 1) = . d/2 kνt k (R 2 − 2Rt + 1) OPCOP 2017, Peter Dragnev, IPFW t t0 -1 1 t > t0 , Η't Ηt Us +Qa Usηt (z) Usηt (z) t0 t -1 Ηt t=t0 -1 Η't -1 Usηt (z) Usηt (z) 1 t t0 + Qa (z) = Fs (Σt ) on Σt , on Σt . t < t0 , Ηt Us +Qa t + Qa (z) ≥ Fs (Σt ) on Sd \ Σt , ηt0 ≥ 0 1 t0 -1 on Σt . t = t0 , Usηt (z) Usηt (z) t=t0 1 -1 + Qa (z) = Fs (Σt ) on Σt , ηt0 0 1 Us +Qa Η't + Qa (z) ≥ Fs (Σt ) on Sd \ Σt , 1 + Qa (z) Fs (Σt ) on Sd \ Σt , + Qa (z) = Fs (Σt ) on Σt , ηt0 ≥ 0 on Σt . OPCOP 2017, Peter Dragnev, IPFW Separation of Q-optimal OPC on Sd ; BDS ’14 s Set Q(x) := q/ |x − b| , |b| > 1, let {x1 , x2 , . . . , xN } be a Q-optimal e OPC. If xN is the fixed, then {x1 , x2 , . . . , xN−1 } is a Q-optimal OPC −s e with Q(x) = Q(x) + |x − xN | /(N − 2). Theorem e • If d − 2 ≤ s < d, then all Q-Fekete points are in supp(µQe ). + • In addition, supp(µQ e ) ⊆ supp(η e ) for any compact Q,K supp(µQe ) ⊆ K ⊆ Sd . Theorem If d − 2 < s < d, then (s) δ(ωQ,N ) ≥ 2B(d/2, 1/2) (1 + q)B(d/2, (d − s)/2) 1/d N −1/d . OPCOP 2017, Peter Dragnev, IPFW Multiple source Log external fields on S2 - BDSW ’17 Q(x) := k X i=1 qi log p 1 , ai ∈ S2 , q := q1 + · · · + qk , ri := 2 qi /(1 + q). |x − ai | Theorem Let qi be small enough, such that Σi := {x : |x − ai | < ri }, i = 1, . . . , k , are non-intersecting. Then supp(µQ ) = S2 \ ∪Σi , µQ = (1 + q)σ2|supp(µ ) . Moreover, all Q-optimal OPC are contained in S2 \ ∪Σi . Q OPCOP 2017, Peter Dragnev, IPFW Multiple source Log external fields on S2 - BDSW ’17 The same theorem holds if we substitute point masses at ai with localized rotational measures dφi , namely let Qφ (x) := k X U0φi (x) = i=1 k Z X i=1 log 1 dφi (y) |x − y| where dφi = fi (hx, ai i)dσ2 (x), fi (u) ≡ 0, u ∈ [−1, qi := kφi k. q 1 − ri2 /2], Theorem Let qi be small enough, such that Σi := {x : |x − ai | < ri }, i = 1, . . . , k , are non-intersecting. Then supp(µQφ ) = S2 \ ∪Σi , µQφ = (1 + q)σ2|supp(µ Qφ ) Moreover, all Qφ -optimal OPC are contained in S2 \ ∪Σi . . OPCOP 2017, Peter Dragnev, IPFW Multiple source Log external fields on C - BDSW ’17 Fix ak at the north pole, projection K : S2 → C, wi = K(ai ), k −1 q X 1 e Q(z) := qi log + (1 + q) log 1 + |z|2 , z ∈ C. |z − wi | i=1 e e Q(z) is admissible as lim|z|→∞ Q(z) − log |z| = ∞. Theorem For small enough qi there are open discs D1 , . . . , Dm−1 in C with wi ∈ Di = K(Σi,i ), 1 ≤ i ≤ m − 1, such that s ( ) m−1 [ 1 + q − qm SQe = z ∈ C : |z| ≤ \ Di . qm i=1 e is given by The extremal measure µQe associated with Q dµQe (z) = 1+q 2 π (1 + |z|2 ) dA(z). (1) OPCOP 2017, Peter Dragnev, IPFW Multiple source (d − 2)-external fields - BDSW ’17 Q(x) := k X i=1 qi , |x − ai |d−2 ai ∈ Sd . In this case, there is a mass loss in the balayage process and the radii of the spherical caps Σi are determined implicitly. Theorem For qi small enough, there are unique ρi such that Σi := {x : |x − ai | < ρi }, i = 1, . . . , k , are non-intersecting and supp(µQ ) = Sd \ ∪Σi , µQ = Cσd |supp(µ ) . Q Moreover, all Q-optimal OPC are contained in Sd \ ∪Σi . Remark (Connection to Facility Allocation Problem on Sd ) In [FoCM ’15] Carlos Beltran reformulated the Log OPC problem on S2 as facility allocation problem. Possible generalization to Sd . OPCOP 2017, Peter Dragnev, IPFW Regions of electrostatic influence and s-OPC Qs (x) := m X i=1 qi , |ai − x|s q i := qi . 1 + q − qi Let Φs (ti ) be the Fs -functional associated with q i /|ai − xi |s evaluated for Σi . Let γ i denote the unique solution of the equation Φs (ti ) = 2d−s q i , γid 1 ≤ i ≤ m. (2) Theorem Let d − 2 ≤ s < d, d ≥ 2, and let γ = (γ 1 , . . . , γ m ) be the vector of solutions of (2). Then the support SQs of the s-extremal measure µQs Tm associated with Qs is contained in the set Σγ = i=1 Σi,γ i . Furthermore, no point of an optimal N-point configuration w.r.t. Qs lies in Σi,γ i , 1 ≤ i ≤ m. OPCOP 2017, Peter Dragnev, IPFW Regions of electrostatic influence and s-OPC Figure: Approximate Coulomb-optimal points for m = 2, N = 4000, √ √ 3 3 q1 = q2 = 41 , a1 = (0, 0, 1) and a2 = (0, 1091 , − 10 ) or a2 = (0, 1091 , 10 ) OPCOP 2017, Peter Dragnev, IPFW Regions of electrostatic influence and s-OPC Problem The two images below compare approximate log-optimal configurations with 4000 and 8000 points - overlapping case. We pose as an open problem the precise determination of the support in such a case. OPCOP 2017, Peter Dragnev, IPFW THANK YOU!