Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture 2: Techniques for Integration I. Integration by Parts, part II Z Z udv = uv − vdu Choose u and dv wisely: Use the acronym IPET as a guideline for choosing u. Check the integrand in the order: • I = inverse func. (ex. arctan(x), ln(x)) (one IBP at a time) • P = polynomial (ex. 5x3) • E = exponential func. (ex. ax, e3x) (sometimes 2 IBPs) • T = trigonometric func. (ex. cos(2x), tan(x)) (E & T interchangeable) Z ex. ln xdx (x ln x − x + c) 1 Z ex. Evaluate 1 arctan xdx 0 √ (x arctan x + ln( 1 + x2 ) = π/4 − (1/2) ln 2) 2 Z ex. ex sin xdx ([ex (sin x − cos x)]/2 + c) 3 SUMMARY: COMMON INTEGRALS USING INTEGRATION BY PARTS 1. For integrals of the form Z Z Z xnabx dx, xn sin ax dx, xn cos ax dx Let u = xn and differentiate u all the way till du = 0. 2. For integrals of the form Z Z Z xn ln x dx, xn arcsin ax dx, xn arctan ax dx Let u = ln x, arcsin ax, or arctan ax and differentiate u just once and evaluate the ’left over’ integral. (may need to repeat IBP) 3. For integrals of the form Z Z eax sin cx dx, abx cos cx dx Let u = abx and differentiate u twice and evaluate the ’left over’ integral. 4 Now You Try It (NYTI): Z • Z • Z • √ sin( x)dx x5xdx x5 ln xdx √ √ √ (−2 x cos( x) + 2 sin( x) + c) x ( x5 ln 5 − 6 5x (ln 5)2 + c) ( x6 ln x − 1 x6 6 6 5 + c) Z • t ex sin(t − x)dx ( 21 (et − cos t − sin t)) 0 Z • x ln(1 + x)dx ( 21 x2 ln |1 + x| − 14 x2 + 12 x − 1 2 ln |1 + x| + c) 6 Z • x sec2(2x)dx ( 12 [x tan(2x) + x arctan xdx ( 21 x2 arctan x − 12 x + 1 2 ln | cos(2x)|] + C) Z • 1 2 arctan x + c) Z • cos x ln(sin x)dx (sin(x) ln | sin x| − sin x + c) 7