Download Math 1110 Test 1. Fall 2012

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 1110 Test 1. Fall 2012
Problems 1–4. Simplify. You final answer should
not contain any negative exponents.
1.
(2x2 y −1 z)3
2.
3.
3
4.
2x4 y 7 z
−2
x y 3 z −2
9x2 y ·
8x3
y −6
3
2
3x10
y4
2/3
Problems 5–6. Simplify the following rational
expressions.
5.
1
1
−
x2 + 3x + 2 x2 − 2x − 3
6.
x
−
y
1
−
x2
y
x
1
y2
Problems 7–11. Factor each expression completely.
7.
x2 − 4x − 12
8.
2x2 + 7x + 5
9.
x3 + 27
10.
x4 − 16
11.
x3 + 3x2 − x − 3
Problems 12–15. Solve each of the following
equations.
12.
3x2 − 11x = 4
13.
x=
14.
5
28
x+5
=
+ 2
x−2
x+2 x −4
15.
x − 6x1/2 + 8 = 0
√
2x − 2 + 1
16. Use the quadratic formula to find all real
solutions of the equation 2x2 + 5x = 1.
solutions
6.
x
−
y
1
−
x2
1.
(2x2 y −1 z)3 = 23 x6 y −3 z 3 =
8x6 z 3
.
y3
x3 y − xy 3
y 2 − x2
2.
2x4 y 7 z
x−2 y 3 z −2
y
x x2 y 2
·
1 x2 y 2
y2
2
=
22 x8 y 14 z 2
= 4x12 y 8 z 6 .
x−4 y 6 z −4
xy(x2 − y 2 )
(y 2 − x2 )
= −xy
3.
3
9x2 y·
3
3x10
=
y4
=
4.
8x3
y −6
3
2/3
3
9x2 y · 3x10
y4
3x4
27x12
=
y3
y
82/3 x2
= −4 = 4x2 y 4
y
7.
8.
9.
x2 − 4x − 12 = (x − 6)(x + 2)
2x2 + 7x + 5 = (2x + 5)(x + 1)
x3 + 27 = (x + 3)(x2 − 3x + 9)
10.
5.
x4 − 16
1
1
− 2
2
x + 3x + 2 x − 2x − 3
= (x2 − 4)(x2 + 4)
= (x − 2)(x + 2)(x2 + 4)
1
1
−
=
(x + 1)(x + 2) (x + 1)(x − 3)
=
(x − 3) − (x + 2)
(x + 1)(x + 2)(x − 3)
=
−5
(x + 1)(x + 2)(x − 3)
11.
x3 + 3x2 − x − 3
= x2 (x + 3) − 1(x + 3)
= (x + 3)(x2 − 1)
= (x + 3)(x + 1)(x − 1)
12.
3x2 − 11x − 4 = 0
(3x + 1)(x − 4) = 0
3x + 1 = 0,
x = −1/3,
x−4=0
x=4
13.
x−1=
√
2x − 2
(x − 1)2 = 2x − 2
x2 − 2x + 1 = 2x − 2
x2 − 4x + 3 = 0
(x − 3)(x − 1) = 0
x = 3,
x=1
Check to see that both 1 and 3 are valid solutions by plugging into the original equation.
They both work.
14. Multiply both sides of the equation by the
common denominator (x + 2)(x − 2):
(x + 2)(x + 5) = 5(x − 2) + 28
x2 + 7x + 10 = 5x − 10 + 28
x2 + 2x − 8 = 0
(x + 4)(x − 2) = 0
x = −4,
x=2
Note that 2 is not a solution, however, because
it would cause a zero in a denominator of a
fraction.
15.
(x1/2 )2 − 6x1/2 + 8 = 0.
Put u = x1/2 . Then
u2 − 6u + 8 = 0
(u − 2)(u − 4) = 0
u = 2,
u=4
x1/2 = 2,
x = 4,
x1/2 = 4
x = 16
16.
x=
−5 ±
√
25 − 4 · 2 · (−1)
−5 ± 33
=
.
2·2
4
Related documents