Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 1110 Test 1. Fall 2012 Problems 1–4. Simplify. You final answer should not contain any negative exponents. 1. (2x2 y −1 z)3 2. 3. 3 4. 2x4 y 7 z −2 x y 3 z −2 9x2 y · 8x3 y −6 3 2 3x10 y4 2/3 Problems 5–6. Simplify the following rational expressions. 5. 1 1 − x2 + 3x + 2 x2 − 2x − 3 6. x − y 1 − x2 y x 1 y2 Problems 7–11. Factor each expression completely. 7. x2 − 4x − 12 8. 2x2 + 7x + 5 9. x3 + 27 10. x4 − 16 11. x3 + 3x2 − x − 3 Problems 12–15. Solve each of the following equations. 12. 3x2 − 11x = 4 13. x= 14. 5 28 x+5 = + 2 x−2 x+2 x −4 15. x − 6x1/2 + 8 = 0 √ 2x − 2 + 1 16. Use the quadratic formula to find all real solutions of the equation 2x2 + 5x = 1. solutions 6. x − y 1 − x2 1. (2x2 y −1 z)3 = 23 x6 y −3 z 3 = 8x6 z 3 . y3 x3 y − xy 3 y 2 − x2 2. 2x4 y 7 z x−2 y 3 z −2 y x x2 y 2 · 1 x2 y 2 y2 2 = 22 x8 y 14 z 2 = 4x12 y 8 z 6 . x−4 y 6 z −4 xy(x2 − y 2 ) (y 2 − x2 ) = −xy 3. 3 9x2 y· 3 3x10 = y4 = 4. 8x3 y −6 3 2/3 3 9x2 y · 3x10 y4 3x4 27x12 = y3 y 82/3 x2 = −4 = 4x2 y 4 y 7. 8. 9. x2 − 4x − 12 = (x − 6)(x + 2) 2x2 + 7x + 5 = (2x + 5)(x + 1) x3 + 27 = (x + 3)(x2 − 3x + 9) 10. 5. x4 − 16 1 1 − 2 2 x + 3x + 2 x − 2x − 3 = (x2 − 4)(x2 + 4) = (x − 2)(x + 2)(x2 + 4) 1 1 − = (x + 1)(x + 2) (x + 1)(x − 3) = (x − 3) − (x + 2) (x + 1)(x + 2)(x − 3) = −5 (x + 1)(x + 2)(x − 3) 11. x3 + 3x2 − x − 3 = x2 (x + 3) − 1(x + 3) = (x + 3)(x2 − 1) = (x + 3)(x + 1)(x − 1) 12. 3x2 − 11x − 4 = 0 (3x + 1)(x − 4) = 0 3x + 1 = 0, x = −1/3, x−4=0 x=4 13. x−1= √ 2x − 2 (x − 1)2 = 2x − 2 x2 − 2x + 1 = 2x − 2 x2 − 4x + 3 = 0 (x − 3)(x − 1) = 0 x = 3, x=1 Check to see that both 1 and 3 are valid solutions by plugging into the original equation. They both work. 14. Multiply both sides of the equation by the common denominator (x + 2)(x − 2): (x + 2)(x + 5) = 5(x − 2) + 28 x2 + 7x + 10 = 5x − 10 + 28 x2 + 2x − 8 = 0 (x + 4)(x − 2) = 0 x = −4, x=2 Note that 2 is not a solution, however, because it would cause a zero in a denominator of a fraction. 15. (x1/2 )2 − 6x1/2 + 8 = 0. Put u = x1/2 . Then u2 − 6u + 8 = 0 (u − 2)(u − 4) = 0 u = 2, u=4 x1/2 = 2, x = 4, x1/2 = 4 x = 16 16. x= −5 ± √ 25 − 4 · 2 · (−1) −5 ± 33 = . 2·2 4