Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
www.sakshieducation.com Chapter –11 Trigonometry In a right triangle ABC as show in the figure AC is called hypotenuse. C BC is called “Opposite side of A” AB is called “Adjacent side of the A”. Ratios in A Right Angle Triangle: B sin A opposite side of A BC Hypotenuse AC cos A adjacent side of A AB Hypotenuse AC Tan A opposite side of A BC Adjacent side of A AB Sec A hypotenuse AC 1 adjacent side of A AB cos A cosec A cot A hypotenuse AC 1 opposite side of A BC sin A Adjacent side of A AB 1 opposite side of A BC Tan A Note: We observe that TanA sin A cos A and cot A cos A sin A www.sakshieducation.com A www.sakshieducation.com Trigonometric ratios of some specific angles: A 0 30 45 60 90 Sin A 0 1 2 1 2 3 2 1 Cos A 1 3 2 1 2 1 2 0 Tan A 0 1 3 1 3 Not defined Cot A Not defined 3 1 1 3 0 Sec A 1 2 3 2 2 Not defined Cosec A Not defined 2 2 2 3 1 The value of sinA will be increased from 00 to 900 The value of cosA will decreased from 00 to 900 If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be determined The value of sinA or cosA never exceeds, where as the value of sec A or CosecA is always greater than or equal to 1. Trigonometric ratios of complementary angles: C 0 0 Sin (90 – A) = CosA Cosec (90 - A) = SecA Cos (900 – A) = SinA Sec (900 - A) = CosecA Tan (900 – A) = CotA Cot (900 - A) = TanA www.sakshieducation.com 90-A B A www.sakshieducation.com Exercise 11.1 1.In a right angle triangle ABC, 8cm, 15cm and 17cm are the lengths of AB, BC and CA respectively. Then, find out sinA, cosA and tanA. A. In ABC, AB = 8cm A 17cm BC = 15 cm 8cm AC = 17 cm SinA 2. opposite side BC 15 Hypotenuse AC 17 CosA Adjacent side AB 8 Hypotenuse AC 17 tan A oppsite side BC 15 Hypotenuse AB 8 B 15cm C The sides of a right angle triangle PQR are PQ = 7cm, QR = 25cm P = 90° respectively then find tanQ – tanR. Sol: Given that in PQR, Q PQ = 7cm and QR = 25 cm. PQR is a right angle triangle 25 7cm By using Pythagoras theorem PR QR2 PQ2 252 7 2 625 49 576 24cm. www.sakshieducation.com P R www.sakshieducation.com tan Q tan R PR 24 PQ 7 PQ 7 PR 24 tan Q tan R 3. 24 7 576 49 527 . 7 24 168 168 In a right angle triangle ABC with right angle at B, in which a = 24 units, b = 25 units and BAC =. Then find cos and tan . A. In a right angle triangle ABC B = 900, BAC = . a = BC = 24 units and b = AC = 25units. By using Pythagoras theorem AB AC 2 BC 2 252 24 2 625 576 C = AB = 49 = 7cm. Then cos AB 7 AC 25 tan BC 24 AB 7 www.sakshieducation.com www.sakshieducation.com 12 , then find sinA and tanA. 13 4. If cos A A. Given that cosA= 12 BA 13 AC BA AC K say . 12 13 Where k is a positive number BA = 12k AC = 13K By using Pythagoras theorem BC AC 2 BA2 BC 13k 2 12k 2 sin A TanA 169k 2 144k 2 25k 2 5k BC 5k 5 AC 13k 13 BC 5k 5 AB 12k 12 5. If 3 tanA = 4, Then find sinA and cosA. A. Given that 3 tan A = 4 www.sakshieducation.com www.sakshieducation.com tan A 4 BC 3 AB BC 4 say. AB 3 BC AB k say. for any positive integer k. 4 3 BC = 4k and AB = 3k By using Pythagoras theorem AC2 = AB2 + BC2 = (3k)2+ (4k)2 = 9k2 + 16K2 AC2 = 25k2 AC = 5k. Now, sin A cos A 6. BC 4k 4 . AC 5k 5 AB 3k 3 . AC 5k 5 If A and X are acute angles such that cosA= cosX, then show that A= X. Sol: Let us consider two right angled triangles ABC and XYZ and right angles at B and Y respectively. C Z Given that cosA = cosx From ABC B A www.sakshieducation.com Y X www.sakshieducation.com cos A AB 1 AC From XYZ cos X XY 2 XZ From (1) & (2) Let cos A cos X AB XY K AB AC k 3 AC XZ 1 XY XZ BC YZ AB XY AC XZ AC 2 AB 2 XZ 2 XY 2 K 2 XZ 2 K 2 XY 2 XZ 2 XY 2 By pythagoras theorem K XZ 2 XY 2 XZ 2 XY 2 K AB AC BC XY XZ YZ ABC XYZ A = X Proved . 7. 7 8 Given cos , then evaluate (i) 1 sin 1 sin 1 cos 1 cos (ii) 1 sin . cos Sol: let us draw a right angle triangle ABC in which BAC = . www.sakshieducation.com www.sakshieducation.com cot 7 (Given) 8 AB 7 BC 8 AB BC k (Say) where k is a positive integer. 7 8 AB = 7k and BC = 8k. By using Pythagoras Theorem AC AB2 BC 2 7k 2 8k 2 49k 2 64k 2 113k. sin cos BC 8k 8 AC 113k 113 AB 7k 7 AC 113k 113 2 i 8 1 2 2 (1 sin ) 1 sin 1 sin 113 2 1 cos 1 cos (1)2 cos2 7 1 113 64 113 64 49 113 . 49 113 49 64 1 113 1 www.sakshieducation.com www.sakshieducation.com ii 1 sin cos 1 8. 8 113 113 8 . 7 7 113 In a right angle triangle ABC, right angle at B, if tan A = 3. Then find the value of (i) sinA cosC+ cosA sinC. (ii) cosA cosC – sinA sinC. Sol: let us draw a right angled triangle ABC. Given that Tan A = 3 = BC 3 AB 1 BC AB k say. 1 3 3 , B = 900. 1 Where k is any positive integer BC = 3k, AB = k. By using Pythagoras theorem AC AB2 BC 2 k2 3k 2 www.sakshieducation.com www.sakshieducation.com 4k 2 2k. AC = 2k. There fore sin A BC 3k 3 AC 2k 2 cos A AB k 1 . AC 2k 2 sin C AB k 1 BC 3k 3 ; cos C AC 2k 2 AC 2k 2 Now (i) sinA cosC + cos A sinC (ii) 3 3 1 1 3 1 . . 1 2 2 2 2 4 4 cosA cosc – sinA sinC 1 3 3 1 . . 0. 2 2 2 2 www.sakshieducation.com www.sakshieducation.com Exercise - 11.2 1. Evaluate the following. (i) sin 450 + cos450 Sol: we know that sin 450 1 1 and cos450 2 2. sin 45 cos 45 ii 1 1 2 2 2 2 2 cos 45 sec30 cos ec60 1 2 1 1 3 2 2 2 22 2 22 3 3 3 iii 3 . 4 2 sin 30 tan 45 cos ec60 cot 45 cos 60 sec30 1 2 We know that sin 30 , tan 45 1, cos ec 60 2 3 1 2 cot 45 1;cos 60 ;sec30 2 3 1 1 sin 30 tan 45 cos ec60 2 cot 45 cos 60 sec30 1 1 2 (iv) 2 tan2 45 + cos2 30 – sin2 60 A. tan 45= 1; cos 30 2 3 1 2 3 3 3 . ; sin 60= 2 2 www.sakshieducation.com www.sakshieducation.com 2 tan2 45 + cos2 30 – sin2 60 2 2 3 3 3 3 2 1 2 2. 4 4 2 2 2 v sec2 60 tan 2 60 sin 2 30 cos 2 30 A. sec 60 = 2, tan 60 = 3 1 3 sin 30 , cos 30 2 2 2. 2 2 2 sec 60 tan 60 43 1 1. 2 2 2 2 1 3 1 sin 30 cos 30 1 3 4 4 2 2 2 2 3 Evaluate sin 60. Cos 30 + sin 30 cos 60. What is the value of sin (60 + 30). What can you conclude? A. We know that sin 60 cos 60 3 2 sin 30 1 2 1 2 cos 30 3 . 2 Sin 60. cos 30 + sin 30 cos 60 3 3 1 1 3 1 4 . . 1. 2 2 2 2 4 4 4 Sin (60 + 30) = sin (90) = 1 we can conclude that Sin (60 + 30) = sin 60 cos 30 + sin 30. Cos 60 Sin (A + B) = sinA cosB + cosA sinB. www.sakshieducation.com www.sakshieducation.com 3. Is it right to say cos (60 + 30) = Cos 60 cos 30 – sin 60 sin 30. Sol. L.H.S cos (60 + 30) = cos 90 = 0 1 2 3 2 3 2 cos 60 We know that sin 30 ; cos 30 sin 60 1 2 R.H.S= cos 60 cos 30 – sin 60 sin 30 1 3 3 1 3 3 0 2 2 2 2 4 4 It is right to say that Cos (60 + 30) = cos 60 cos 30 – sin 60 sin 30. 4.In right angled triangle PQR, right angle is at Q and PQ = 6cm, RPQ = 60. Determine the lengths of QR and PR. Sol: In PQR Q = 90 PQ = 6cm. Then cos 60 Adjacent snide Hypotenuse 1 PQ 2 PR 1 cos 60 2 www.sakshieducation.com www.sakshieducation.com PQ 1 PR 2 PQ 2 6cm 12cm. PR 2 Similliarily sin 60 opposite side QR Hypotenuse PR 3 QR 3.PR QR 2 PR 2 QR 3 12 6 3cm. 2 QR 6 3cm, PR 12cm. 5.In XYZ, right angle is at y, yz = x, and XZ= 2x then determine YXZ YZX. Sol: sin X oppsite side of x x 1 hypotenuse 2x 2 sin X 1 sin 30 2 X = 30 or YXZ = 30 cos Z Adjacent side of z x 1 hypotenuse 2x 2 cos Z 1 cos 60 2 Z = 60 or YZX = 60 www.sakshieducation.com and www.sakshieducation.com Exercise – 11.3 1) Evaluate (i) tan 36 We can write tan = cot (90 - ). cot 54 Cot = tan (90 - ) tan 36 = cot (90 - 36) ii) tan 36 cot 90 36 cot 54 1 cot 54 cot 54 cot 54 cos 12 – sin 78 cos (90 – 78) – sin 78 cos 90 sin sin 78 – sin 78 = 0. iii) cosec 31- sec 59 cosec (90 - 59) – sec 59 sec 59 – sec 59 = 0. iv) (sec = cosec (90 - )) sin 15 sec 75 sin 15 . sec (90 - 15) = sin 15. Cosec 15 sin15. sec 90 cos ec 1 sin cos ec 1 1 sin15 www.sakshieducation.com www.sakshieducation.com v) tan 26 . Tan 64 tan 26 . tan 64 = tan 26 .tan (90 - 26) tan 90 cot cot . 1 tan = tan 26. Cot 26 tan 26. 2. 1 1 tan 26 Show that (i) tan 48. tan 16 . tan 42. tan 74 = 1 (ii) cos 36. cos 54 - sin 36.sin54 = 0 A. (i) tan 48 . tan 16 tan 42 . tan 74 We know that tan (90 - ) = cot . Re write tan 48 = tan (90 - 42) and tan 16 = tan (90 - 74) tan 48 . tan 16. tan 42. tan 74 = tan (90 - 42). tan (90 - 74) .tan 42. tan 74 = cot 42. Cot 74. tan 42. tan 74. = (cot 42.tan42) (cot 74. tan 74) =11 cot .tan 1 or tan . 1 cot =1 www.sakshieducation.com www.sakshieducation.com (ii) cos 36 . cos 54 - sin 36 sin 54 = 0. A. take L.H.S. cos 36. cos 54 - sin 36sin 54 = cos 36.cos (90 - 36) – sin 36 (90 - 36) = cos 36. sin36 - sin 36. cos 36. (cos (90 ) sin Sin (90 ) cos ) = 0. R.H.S. 3. If tan 2A = cot (A - 18), where 2A is an acute angle. Find the value of A. A. Given that tan 2A = cot (A - 18) cot (90 - 2A) = cot (A - 18) cot(90 2 A) tan 2 A 90 2 A and A 18 both are acute angles 90 - 2A = A - 18 - 2A – A = - 18 - 90 - 3A = - 108 A 4. 108 36 3 A = 36. If tan A = cot B, where A & B are acute angles, prove that A + B = 90. Sol: Given that tan A = cot B. tan A = tan (90 - B) A = 90 - B. tan(90 ) cot A and (90 B ) both are acute angle. A + B = 90. www.sakshieducation.com www.sakshieducation.com 5. If A, B and C are interior angle of a triangle ABC, then show that C A B tan cot . 2 2 Sol: The sum of the interior angles in ABC is 180 A + B + C = 180 A B C 180 90 2 2 2 A B C 90 2 2 C A B tan tan 90 2 2 tan 90 cot C A B tan cot . 2 2 6. Express sin 75 + cos 65 in terms of trigonometric ratios of angles between o and 45. A. sin 75 = sin (90 - 15) = cos 15 cos 65 = cos (90 - 25) = sin 25. sin 90 cos cos 90 sin sin 75 + cos 65 = cos 15 + sin 25. www.sakshieducation.com www.sakshieducation.com Exercise – 11.4 1. Evaluating the following. (i) (1 + tan + sec ) (1 + cot - cosec ). (1 + tan + sec ) (1 + cot - cosec ) A. 1 1 tan sec 1 cos ec tan tan 1 tan .cos ec 1 tan sec tan tan cos ec 1 tan sec tan 1 sec sin 1 . cos sin tan 1 sec cos 1 tan 2 sec2 tan 1 tan 2 2 tan sec 2 tan 1 2 tan sec2 tan 2 tan 1 2 tan 1 2 tan 2. tan tan ii) (sin + cos )2 + (sin - cos )2. A. (sin + cos )2 + (sin - cos )2 Sin2 + cos2 + 2sin cos + sin2 + cos2 - 2sin cos www.sakshieducation.com www.sakshieducation.com = 2sin + 2cos = 2(sin + cos ) 2 2 2 2 sin 2 cos 2 1 = 2 (1) = 2. iii) A. (sec2 - 1) (cosec2 - 1) sec2 1 tan 2 cosec2 1 cot 2 (sec2 - 1) (cosec2 - 1) = tan2 .cot2 = 1. (cosec cot )2 2) Show that A. L.H.S (cosec - cot)2 1 cos 1 cos cos 1 cos 1 cos 1 sin 2 sin sin sin 2 2 1 cos 1 cos2 3) Show that A. L.H.S 2 1 cos 2 1 cos 1 cos 1 cos 1 cos R.H .S . 1 sin A sec A tan A. 1 sin A (1 sin A) 1 sin A 1 sin A 1 sin A 1 sin A1 sin A 2 1 sin A2 2 cos A 1 sin A2 1 sin 2 A 1 sin 2 A cos 2 A 1 sin A cos A www.sakshieducation.com www.sakshieducation.com 1 sin A cos A cos A = sec A + tan A. R.H.S. 4. 1 tan 2 A tan 2 A. 2 Show that cot A 1 A. L.H.S sin 2 A cos 2 A sin 2 A 1 tan 2 A cos 2 A cos 2 A cot 2 A 1 cos 2 A cos 2 A sin 2 A 1 sin 2 A sin 2 A 1 cos2 A sin 2 A sin 2 A cos2 A cos2 A sin 2 A sin 2 A tan 2 A. 2 cos A R.H .S II Method: 1 tan 2 A 1 tan 2 A 1 tan 2 A 1 cot 2 A 1 1 tan 2 A 1 tan 2 A tan 2 A = tan2A=R.H.S. 5. 1 cos tan .sin . Show that cos A. L.H.S. 1 1 cos 2 cos cos cos sin 2 cos www.sakshieducation.com www.sakshieducation.com sin .sin tan .sin . = cos R.H.S. L.H.S.=R.H.S. 6. Simplify sec A . (1 - sinA) . (sec A + tan A). A. Sec A (1 – sinA). (sec A + tan A) = (sec A – sec A sinA) (sec A + tan A) = (sec A 1 1 .sin A ) (sec A + tan A) sec A cos A cos A = (sec A – tan A) (sec A + tan A) sin A tan A cos A = Sec2 A – tan2A sec2 A tan 2 A 1 = 1. 7. Prove that (sin A + cosec A)2 + (cosA + secA)2 = 7 + tan2 A cot2A A. L.H.S (sinA + cosec A)2 + (cosA + sec A)2 = sin2A + cosec2A + 2 sinA.cosecA + cos2A + sec2A+ 2 secA . cosA = (sin2A + cos2A) + cosec2A + sec2A + 2sinA cosecA + 2secA cosA = 1 + (1 + cot2A) + (1 + tan2A) + 2sin A. 1 1 2. .cos A sin A cos A = 1 + 1 + cot2A + 1 + tan2A + 2 + 2 = 7 + cot2A + tan2A =R.H.S. www.sakshieducation.com www.sakshieducation.com 8. Simplify (1 – cos ) (1 + cos ) (1 + cot2 ). A. (1 – cos ) (1 + cos ) (1 + cot2 ) = (1 – cos ) (1 + cot ) 2 2 1 cot 2 cos ec 2 = sin2 (1 + cot2 ) = sin2 . Cosec2. = 1. 9. If sec + tan = P; then what is the value of sec - tan ? A. sec + tan = P. (Given) We know that sec2 - tan2 = 1 a 2 b 2 ( a b) a b (sec + tan ) (sec - tan) = 1 P (sec - tan ) = 1 Sec - tan = 1 p The value of sec - tan = 1 p. 10. k 2 1 If cosec + cot = k, then show that cos 2 . K 1 A. Given that cosec + cot = k (1) 1 k (2) Then cosec - cot = cos ec 2 cot 2 1 cos ec cot cos ec cot 1 1 cos ec cot cos ec cot Adding (1) & (2) we get www.sakshieducation.com www.sakshieducation.com 1 k 2 1 2 cos ec k 2 cos ec (3) k k Subtracting (2) from (1) we get 2 cot k 1 k 2 1 2 cot (4) k k Dividing (4) by (3) we get k 2 1 2 cot k 2 1 k 2k 2 2 cos ec k 1 k k 1 k cos k 2 1 .sin 2 sin k 1 cos k 2 1 k 2 1 www.sakshieducation.com www.sakshieducation.com Objective Type Questions 1. In the following figure, the value of cot A is a) 2. 5 12 c) 5 13 d) 13 5 b) 5 12 c) 12 5 d) b cos sin then the value of is a cos sin ba ba b) b – a 1 2 b) 3 2 c) 1 c) b + a d) [ ] [ ] [ ] 13 5 d) ba ba The maximum value of sin is _______ a) 5. 5 13 If cot a) 4. b) ] If in ABC, B = 90, AB = 12 cm and BC = 5cm then the value of cos c is. a) 3. 12 13 [ 1 2 If A is an acute angle of a ABC, right angled at B, then the value of sin A + cos A is [ a) Equal to one b) greater than two c) Less than one d) equal to two www.sakshieducation.com ] www.sakshieducation.com 6. The value of 2 tan 30 is 1 tan 2 30 a) sin 60 7. If sin a) 8. 1 2 5 3 4 3 d) b) 1 4 c) b) 1 3 4 b) 1 c) b) 1 3 1 3 3 4 b) 30 c) 45 b) cos25 ] [ ] [ ] [ ] [ ] [ ] d) 2 d) 1 4 d) 35.5 The value of 1 + tan 5 cot 85 is equal to a) sin25 [ d) 3 then tan A is equal to 4 c) ] d) 1 1 cos 2 is sin 2 c) 2 [ 10 3 If sin (x - 20) = cos (3x - 10). Then x is a) 60 13. c) If A + B = 90, cot B = a) 12. 8 3 If tan = cot, then the value of sec is a) 2 11. b) ] d) sin 30 1 , then the value of (tan + cot )2 is 2 If = 45 then the value of a) 0 10. c) tan 60 If sin - cos = 0; then the value of sin4 + cos4 is a) 9. 16 3 b) cos 60 [ c) sec25 d) cosec25 www.sakshieducation.com www.sakshieducation.com 14. If any triangle ABC, the value of Sin a) cos 15. If cos a) 16. b a A 2 d) cos a then cosec is equal to b, b) b c) b2 a 2 b2 a 2 b d) b) 1 c) b) 3 b) 25 [ ] [ ] [ ] [ ] [ ] A 2 a b2 a 2 d) cos 50 c) 1 d) 4 c) 27 d) 15 If cosec = 2 and cot = 3 p where is an acute angle, then the value of p is a) 2 20. c) sin IFf tan + cot = 5 then the value of tan2 + cot2 is ______ a) 23 19. A 2 The value of tan5 tan 25 tan45 tan 65 tan 85 is______ a) 2 18. b) sin The value of cos 20 cos 70 - sin 20 sin 70 is equal to a) 0 17. A 2 BC is ______ 2 b) 1 [ ] [ ] d) 3 c) 0 1 sin A is equal to 1 sin A a) sin A + cos A b) sec A + tan A c) sec A – tan A d) sec2A + tan2A Key: 1. b; 2. a; 3. d; 4. c; 5. b; 6. a; 7. a; 8. a; 9. b; 10. d; 11. c; 12. b; 13. c; 14. a; 15. c; 16. b; 17. c; 18. a; 19. b; 20. b. www.sakshieducation.com www.sakshieducation.com Fill in the Blanks 1 then the value of cosec + cot is ________ 4 1. If cosec - cot 2. sin 45 + cos 45 = ___________ 3. 2 tan2 45 + cos2 30 - sin2 60 = _____________ 4. sin (90 - A) = _______________ 5. If sinA = cosB then, the value of A + B = ______ 6. If sec m n then sin = ______________ 7. In the adjacent figure, the value of secA is _____________. 8. If sinA 9. The maximum value of 10. 2 mn 1 tan245, where A is an acute angle then the value of A is ______ 2 1 0 < < 90 is _________ sec , sin 2 is equal to ________ 1 cos2 1 sin _________ cos 11. if cot = 1 then 12. sec2 - 1 = ________ 13. If sec + tan = p, then the value of sec - tan = ________. www.sakshieducation.com www.sakshieducation.com 14. The value of sinA or cosA never exceeds ________. 15. sec (90 - A) = _______ Key: 1) 4; 7) 13 ; 5 13) 1 ; p mn mn; 2) 2; 3) 2; 4) cos A; 5) 90; 6) 8) 15; 9) 1; 10) 1; 11) 2 + 1; 12) tan2 ; 14) 1; 15) cosecA. Trigonometric Identities An identity equation having trigonometric ratios of an angle is called trigonometric identity. And it is true for all the values of the angles involved in it. (1) sin2A + cos2 A = 1 sin2A = 1 – cos2 A, cos2 A = 1- sin2A (2) sin A 1 cos2 A 1 cos A) 1 cos A cos A 1 sin 2 A 1 sin A) 1 sin A 1 + Tan2A = Sec2A or Sec2A – 1= Tan2A Sec2A- Tan2A = 1 or Tan2A - Sec2A = -1 (SecA + Tan A) (Sec A – Tan A) = 1 S ec A TanA 1 or SecA TanA SecA TanA 1 sec A tan A www.sakshieducation.com www.sakshieducation.com (3) 1 + cot2 A = cosec2 A (or) cosec2A – 1 = cot2A Cosec2 A – cot2A = 1 (or) cot2A – cosec2A = -1 (cosecA + cotA) (cosecA – cot A)= 1 cos ecA cot A 1 1 or cos ecA cot A cos ecA cot A cos ecA cot A (sin + cos)2 + (sin - cos)2 = 2 (sec2 - 1) (cosec2 - 1) = 1. www.sakshieducation.com