Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Functions of Several Variables - (12.1) 1. Functions of Several Variables A function of two variables, say x and y, is a relation that assigns exactly one real number to each ordered pair of real numbers x, y . A function of three variables, say x, y and z, is a relation that assigns exactly one real number to each ordered pair of real numbers x, y, z . For example, a. fx, y 2xy 2 b. fx, y, z x y 2 sin y e z The domain of a function in two variables x, y is a set that contains all ordered pairs x, y at which f is defined. The range of a function is the set of real numbers which are images of the function. The graph of a function of two variables is the graph of the equation z fx, y which is a surface in space. We are not able to graph a function of three variables. Example Find and sketch the domain of the function. ln y a. fx, y b. Fx, y, z 2x 2 − 1 xy , c. Gx, y, z 36 − 4x 2 − 9y 2 − z 2 2 xz a. fx, y is defined if y 0, and 2x 2 − 1 ≠ 0, x ≠ 1 . So, the domain of f is 2 D x, y : y 0 and x ≠ 1 2 b. Fx, y, z is defined if x y ≥ 0, x ≠ 0 and z ≠ 0. So, the domain of F is D x, y, z : x y ≥ 0, x ≠ 0 and z ≠ 0 c. Gx, y, z is defined if 36 − 4x 2 − 9y 2 − z 2 ≥ 0, that is 36 ≥ 4x 2 9y 2 z 2 . So, the domain of G is D x, y, z in the sphere of radius 6 Example Give the domain and range of the function. Sketch the graph of the function. b. fx, y sin x cos y c. fx, y e −x/2 sin y a. fx, y x 2 4y 2 1 a. Let z x 2 4y 2 1. The domain of f is D x, y : − x , − y and the range of f is R z : z ≥ 1. Graph the following ellipses: z 1, z 5, z 17. when z 1, x 2 4y 2 1 1 x 2 4y 2 0 x 0 and y 0, a point 0, 0. 2 when z 5, x 2 4y 2 1 5, x 2 4y 2 4 x y 2 1, an ellipse with a 2, b 1 4 2 y2 when z 17, x 2 4y 2 1 17, x 2 4y 2 16 x 1, an ellipse with a 4, b 2 16 4 1 4 15 3 10 2 5 -2 -4 1 -2 -1 0v u0 2 -2 2 4 0 yv -1 1 2 4 -4 -2 1 2 z x 2 4y 2 1 – z 5, -.- z 17 b. Let z sin x cos y. The domain of the function is D x, y : − x , − y and the range of the function is R z : , and x Graph the following curves: x 6 When x , z sin cos y 12 cosy. 6 6 When y 0, z sinx cos 0 sinx. −1 ≤ z ≤ 1 , y 0. 2 When x , z sin 2 2 1 1 0.5 -5 -5 0.5 -5 -1 5 5 z sin x cos y –x 6 , -1 2 and the domain of the function is z : − z Graph the following curves: x 0, and x 1, y , and y . 6 2 When x 0, z e −0 sin y siny. When x − 1, z e −1/2 sin y. R 5 , ... y 0, c. Let z e −x/2 sin y. The domain of the function is D x, y : − x , − y 2 -5 y t -0.5 y x -0.5 5 cos y cosy. 3 When y , z e −x/2 sin 6 6 1 2 e −x/2 and y , z e −x/2 sin 2 2 e −x/2 10 5 6 4 4 22 10 8 6 4 2 0 -2-2 -4-4 -6 -5 -5 4 2 -10 y t -4 -2 5 x y z e −x/2 sin y – x 0, 1, . . . y 6 , 2 2. Level Curves and Contour Plots A level curve of the function fx, y is a 2-D graph of the equation: fx, y c, for some constant c in the range of f. A contour plot of fx, y is a graph of many level curves fx, y c for c in the range of f. For a function of 3 variables, say Fx, y, z the graph of the equation Fx, y, z c is a surface which is called a level surface. Example Sketch the contour plots of fx, y. a. fx, y x 2 4y 2 1 b. fx, y −x 2 y a. Let z x 2 4y 2 1. The range of z is: z ≥ 1. Let c ≥ 1. The level curves: x 2 4y 2 1 c x 2 4y 2 c − 1 a point or ellipses c 1, x 2 4y 2 0, the level curve is a point 0, 0 2 c 5, x 2 4y 2 4 or x y 2 1, an ellipse with a 2, b 1 4 4 2 -4 -2 0 -2 -4 3 2t 4 -4 8 6 -2 4 2 -2 y u 1 -1 -3 2 -2 -1 1 -2 2 3 -4 v2 -6 -8 x a. z x 2 4y 2 1 b. Let z −x 2 y. The range of z is: b. z −x 2 y −, . Let c be a real number. The level curves: − x 2 y c y − c x 2 parabolas c −2, y x 2 − 2 c 0, y x 2 c 2, y x 2 2 15 10 5 -4 -2 0 2t 4 Example Sketch the level surfaces of Fx, y, z 4x 2 9y 2 z 2 for c 0, c 9, c 36. Let w Fx, y, z. The range of F is: w ≥ 0. For c ≥ 0, the level surface 4x 2 9y 2 z 2 c is an ellipsoid or a point. c 0, 4x 2 9y 2 z 2 0 a point 0, 0, 0 2 2 y2 c 9, 4x 2 9y 2 z 2 9 or x9 z 1, an ellipsoid with a 3 , b 1, c 3 2 1 9 4 2 2 y2 z 1, an ellipsoid with a 3, b 2, c 6 c 36, 4x 2 9y 2 z 2 36 or x 9 4 36 4 -3 5 2 -2 3 x2 9 4 -2 -1 -1 u v 1 1 -2 2 2 y2 1 z2 9 -6 -3 -4 6 3 x2 9 1 3. Density Plot a. z cosx 2 y 2 b. z cose x e y -2 -2 u v 2 2 4 -5 4 y2 4 z2 36 -4 -6 6 1 d. z e −xy c. z lnx 2 y 2 1 1 -2 -1 0.5 y 0.5 -2 2 y x 1 -0.5 -1 5 2 2 1 x -1 -2 -2 -1 x 2 -2 -1 y1 1 0 1 2 20 15 2 -1 10 -3 5 -4 -2 0 yx -1 2 -2 1 -2 -2 -1 -1 2 y 2 -2 -1 1 2 1 y -1 1 -2 1 x 2 2 x -2 -2 -1 -1 y 2 -1 1 -2 y 2 -1 1 1 x 2 6 x -2