Download Lecture Notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Functions of Several Variables - (12.1)
1. Functions of Several Variables
A function of two variables, say x and y, is a relation that assigns exactly one real number to
each ordered pair of real numbers x, y . A function of three variables, say x, y and z, is a relation
that assigns exactly one real number to each ordered pair of real numbers x, y, z . For example,
a. fx, y  2xy 2
b. fx, y, z  x y 2  sin y e z
The domain of a function in two variables x, y is a set that contains all ordered pairs x, y at which
f is defined. The range of a function is the set of real numbers which are images of the function. The
graph of a function of two variables is the graph of the equation z  fx, y which is a surface in
space. We are not able to graph a function of three variables.
Example Find and sketch the domain of the function.
ln y
a. fx, y 
b. Fx, y, z 
2x 2 − 1
xy
,
c. Gx, y, z  36 − 4x 2 − 9y 2 − z 2
2
xz
a. fx, y is defined if y  0, and 2x 2 − 1 ≠ 0,  x ≠  1 . So, the domain of f is
2
D
x, y : y  0 and x ≠  1
2
b. Fx, y, z is defined if x  y ≥ 0, x ≠ 0 and z ≠ 0. So, the domain of F is
D  x, y, z : x  y ≥ 0, x ≠ 0 and z ≠ 0
c. Gx, y, z is defined if 36 − 4x 2 − 9y 2 − z 2 ≥ 0, that is 36 ≥ 4x 2  9y 2  z 2 . So, the domain of G
is
D  x, y, z in the sphere of radius 6
Example Give the domain and range of the function. Sketch the graph of the function.
b. fx, y  sin x cos y
c. fx, y  e −x/2 sin y
a. fx, y  x 2  4y 2  1
a. Let z  x 2  4y 2  1. The domain of f is
D  x, y : −  x  , −   y  
and the range of f is
R  z : z ≥ 1.
Graph the following ellipses: z  1, z  5, z  17.
when z  1, x 2  4y 2  1  1  x 2  4y 2  0  x  0 and y  0, a point 0, 0.
2
when z  5, x 2  4y 2  1  5, x 2  4y 2  4  x  y 2  1, an ellipse with a  2, b  1
4
2
y2
when z  17, x 2  4y 2  1  17, x 2  4y 2  16  x 
 1, an ellipse with a  4, b  2
16
4
1
4
15
3
10
2
5
-2
-4
1
-2
-1
0v u0
2
-2
2
4
0
yv
-1
1
2
4
-4
-2
1
2
z  x 2  4y 2  1
– z  5, -.- z  17
b. Let z  sin x cos y. The domain of the function is
D  x, y : −  x  , −   y  
and the range of the function is
R  z :

, and x 
Graph the following curves: x 
6
When x   , z  sin  cos y  12 cosy.
6
6
When y  0, z  sinx cos 0  sinx.
−1 ≤ z ≤ 1
 , y  0.
2
When x   , z  sin 
2
2
1
1
0.5
-5
-5
0.5
-5
-1
5
5
z  sin x cos y
–x 

6
,
-1

2
and the domain of the function is
z : −  z  
Graph the following curves: x  0, and x  1, y   , and y   .
6
2
When x  0, z  e −0 sin y  siny. When x − 1, z  e −1/2 sin y.
R
5
, ... y  0,
c. Let z  e −x/2 sin y. The domain of the function is
D  x, y : −  x  , −   y  
2
-5
y t
-0.5
y x
-0.5
5
cos y  cosy.

3
When y   , z  e −x/2 sin 
6
6

1
2
e −x/2 and y   , z  e −x/2 sin 
2
2
 e −x/2
10
5
6
4 4 22
10
8
6
4
2
0
-2-2 -4-4 -6
-5
-5
4
2
-10
y
t
-4
-2
5
x
y
z  e −x/2 sin y
– x  0, 1, . . . y 

6
,

2
2. Level Curves and Contour Plots
A level curve of the function fx, y is a 2-D graph of the equation: fx, y  c, for some constant c
in the range of f. A contour plot of fx, y is a graph of many level curves fx, y  c for c in the
range of f.
For a function of 3 variables, say Fx, y, z the graph of the equation Fx, y, z  c is a surface which is
called a level surface.
Example Sketch the contour plots of fx, y.
a. fx, y  x 2  4y 2  1
b. fx, y  −x 2  y
a. Let z  x 2  4y 2  1. The range of z is: z ≥ 1. Let c ≥ 1. The level curves:
x 2  4y 2  1  c  x 2  4y 2  c − 1 a point or ellipses
c  1, x 2  4y 2  0, the level curve is a point 0, 0
2
c  5, x 2  4y 2  4 or x  y 2  1, an ellipse with a  2, b  1
4
4
2
-4
-2
0
-2
-4
3
2t
4
-4
8
6
-2
4
2
-2
y
u
1
-1
-3
2
-2
-1
1
-2
2
3
-4
v2
-6
-8
x
a. z  x 2  4y 2  1
b. Let z  −x 2  y. The range of z is:
b. z  −x 2  y
−,  . Let c be a real number. The level curves:
− x 2  y  c  y − c  x 2 parabolas
c  −2, y  x 2 − 2
c  0, y  x 2
c  2, y  x 2  2
15
10
5
-4
-2
0
2t
4
Example Sketch the level surfaces of Fx, y, z  4x 2  9y 2  z 2 for c  0, c  9, c  36.
Let w  Fx, y, z. The range of F is: w ≥ 0. For c ≥ 0, the level surface 4x 2  9y 2  z 2  c is an
ellipsoid or a point.
c  0, 4x 2  9y 2  z 2  0 a point 0, 0, 0
2
2
y2
c  9, 4x 2  9y 2  z 2  9 or x9 
 z  1, an ellipsoid with a  3 , b  1, c  3
2
1
9
4
2
2
y2
 z  1, an ellipsoid with a  3, b  2, c  6
c  36, 4x 2  9y 2  z 2  36 or x 
9
4
36
4
-3
5
2
-2
3
x2
9
4
-2
-1
-1
u v
1 1
-2 2
2

y2
1

z2
9
-6
-3
-4
6
3
x2
9
1
3. Density Plot
a. z  cosx 2  y 2 
b. z  cose x  e y 
-2
-2
u v
2 2
4
-5 4

y2
4

z2
36
-4
-6
6
1
d. z  e −xy
c. z  lnx 2  y 2 
1
1 -2
-1
0.5
y
0.5
-2
2
y
x
1
-0.5
-1
5
2
2
1
x
-1
-2
-2
-1
x
2 -2
-1
y1
1
0
1
2
20
15
2
-1
10
-3
5
-4
-2
0
yx
-1
2
-2
1
-2
-2
-1
-1
2
y
2
-2
-1
1
2
1
y
-1
1
-2
1
x
2
2
x
-2
-2
-1
-1
y
2
-1
1
-2
y
2
-1
1
1
x
2
6
x
-2
Related documents