Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1715 notes .notebook January 07, 2015 Welcome Back and Introduction to Trig Graphs HAPPY 2015!!! Types of Trig Graphs: First Journal Entry of 2015: 1. Sine Graphs/Inverse Sine Graphs Write down your new year's resolution! 2. Cosine Graphs/Inverse Cosine Graphs 3. Tangent Graphs/Inverse Tangent Graphs Dec 188:17 AM 0º Dec 188:26 AM Trig Graphs Sine Graphs (Recall the chart below from before break) To get the values we will need to graph a sine curve, we will simply need to focus on the exact values for sine on our exact value chart. 120º 135 150 180 210 225º 240º 270º 300 315 330º 360º º º º º º º 30º 45º 60º 90º 0º sin (θ) cos (θ) 30º 45º 60º 90º 120º 135º 150º 180º 210º 225º 240º 270º 300º 315º 330º 360º sin(θ) Dec 188:29 AM Dec 188:33 AM Vocabulary Graphing the Sine Curve There are first some things you need to know: About the axis: y 3 1. yaxis: The scale of the y axis is numbers (i.e. 0, 1, 2, 3, etc...) 2 1 x 90º 60º 45º 30º 1 30º 45º 60º 90º This means that the exact values we got from our chart will be the y values. 2. xaxis: The scale of the x axis is degrees (0º, 30º, 45º, 60º, etc...) 2 3 Amplitude: The amplitude of the trigonometric functions is onehalf the positive distance between the maximum and minimum values of the function. Or the height of the function. Period: One complete repetition of a function is called a cycle. The period of the function is the horizontal length of one complete cycle. Or the length of one cycle. Frequency: The frequency of the function is the number of cycles it completes in a given interval. This interval is generally 360º for sine and cosine functions. Domain: The domain is the set of all first elements of ordered pairs (xcoordinates). Range: The range is the set of all second elements of ordered pairs (ycoordinates). This means that the degree values from the top of our chart will be the xvalues. Dec 188:37 AM Jan 58:24 AM 1 1715 notes .notebook January 07, 2015 y 1 Using your calculator, please fill in the decimal approximations for the following chart: .5 x 30º 60º 120º 150º 210º 240º Means my 300º 330º 45º 90º 135º 180º 225º 270º 315º 360º Means my first point second point is: (0º,0) is: (30º,.5) .5 1 sin(θ) 0º 30º 0 .5 45º .707 60º .866 Jan 58:13 AM 90º 1 120º .866 135º 150º .707 .5 180º 210º 225º 0 .5 .707 240º 270º .866 1 300º 315º .866 .707 330º .5 360º 0 Dec 188:53 AM Ms. R, how does this relate to the unit circle? y 1 .5 x 30º 60º 120º 150º 210º 240º 300º 330º y = sin(x) [basic sine curve] 1. amplitude (height) = 1 45º 90º 135º 180º 225º 270º 315º 360º .5 1 2. period (length of one cycle) = 360º 3. Frequency (how many cycles per 1 period) = 1 4. Domain: { x | x ∈ R} 5. Range: { y | 1 ≤ y ≤ 1} Dec 189:25 AM Dec 1811:22 AM Sine Graphs Day 2 Complete the chart below and graph y=sin(x) in the interval 0 ≤ x ≤ 360 : Where can we see sine graphs in "real life"? s ave Tida w d oun .5 l wa S 1 ve g raph s 30º .5 res 60º 120º 150º 210º 240º 300º 330º 45º 90º 135º 180º 225º 270º 315º 360º 1 eratu Temp Jan 510:40 AM Jan 510:52 AM 2 1715 notes .notebook January 07, 2015 On your second piece of graph paper: What if I asked you to graph Graph y=sin(x) in the interval 0 ≤ x ≤ 720 y=sin(x) in the interval 0 ≤ x ≤ 720? 1 Writing down ALL of those degree measures on the xaxis would be extremely tedious, don't you think? .5 It would be ok for you to only plot points for our quadrantal angle measures. 90º What were those measures again? .5 0º, 90º, 180º, 270º, 360º 1 180º 270º 360º 450º 540º 630º 720º WHY ARE THESE IMPORTANT? Jan 68:24 AM Jan 68:31 AM General form of the Sine Function y = A sin(B(x C)) + D Example: Find the amplitude, frequency, and period of the Amplitude: |A| Find the amplitude, frequency, and period of the following functions: 1. y = 7sin(4x) 3. y = 5sin(5x) 2. y = 3sin(2x) 4. y = 8sin(9x) following function. Frequency: B y = 3sin(2x) Period: 360 Amplitude: B Frequency: Vertical Shift: D Period: Horizontal Shift: C Jan 68:42 AM Jan 68:50 AM Amplitude Formula: |maximumminimum| 2 2. 1. 3. Jan 68:36 AM Jan 72:13 PM 3 1715 notes .notebook January 07, 2015 Write the equation for the following graph: Frequency (How many times you see the complete sine curve between 0º and 360º) 1 1 .5 .5 .5 90º 180º 270º 360º .5 2 1 90º 180º 270º 360º 1 1 Steps: 1. Write out the general formula for sine. 1 90º 180º 270º 360º 2 2. Find the amplitude, frequency, and see if there are any vertical or horizontal shifts. 3. Fill in the general formula with your findings. Jan 68:42 AM Jan 69:08 AM Write the equation for the following graph: 3 2 1 1 2 3 90º 180º 270º Jan 69:11 AM 360º Jan 69:20 AM 4