Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Externally assessed 4 credits Apply algebraic procedures in solving problems Electronic technology, such as calculators or computers, are not permitted in the assessment of this standard. Simplifying algebraic expressions In algebra, a variable is a letter such as x, used to stand for a number. Algebraic terms and expressions are formed by applying operations (such as +, –, ×, ÷) to variables. d. The square of 2 less than x e. The square root of 1 more than y f. p is a multiple of 6. What is the next multiple of 6 after p? g. A dog costs $d per month to feed. A cat costs $27 less per month to feed. What is the cost of feeding a dog and a cat for a month? Simplify your answer. h. Mum is 32 years older than her son, Mark. Mark is 4 years younger than his sister, Daisy. Dad is two years older than Mum. If Mum is m years old what is the sum of all four ages? Simplify your answer. i. Hana buys 3 kg of apples at $a per kilogram and 2 kg of pears at $p per kilogram. Example 1. The number which is double y is 2 × y which is written 2y. The number multiplying y, 2, is called the coefficient of y, and 2y is called the product of 2 and y. 2. The number which is 5 more than half x is written 1x + 5 or x + 5. 2 2 An algebraic expression is made up of terms added (or subtracted) together. Like terms (terms with the same variables) can be simplified by addition or subtraction. AS 91027 MATHEMATICS AND STATISTICS 1.2 Example 1. 7y + 3y = 10y 2. 3x – 8x = –5x 3. 2a2 – 3b + 4a2 + b = 6a2 – 2b i. How much does this cost altogether? Exercise A: Algebraic expressions 1. Ans. p. 43 Write down as algebraic expressions: a. The product of 7 and x b. The sum of y and 4 c. The number which is 3 more than five times the number w © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 ii. How much change does Hana get if she pays $d for her fruit? iii. What restrictions are there on the value of d ? 2 Achievement Standard 91027 (Mathematics and Statistics 1.2) AS 91027 2. Simplify where possible the following. a. 5a + 7a b. 10b – 12b + b Multiplying and dividing terms Any algebraic terms can be multiplied together. Indices are used to simplify repeated multiplication, e.g. y × y is written y2 Example c. 3s – t – 2s + t d. 2p + 8q + 9p – 14q e. 7f 2 1. 3a × 4b = 12ab [3 × 4 = 12, a × b = ab] 2. –2y.6y = –12yy = –12y2 [dot means ×] [using indices] Division of algebraic terms is best written in fraction x form. Simplify using = 1. x –f– 10f 2 Note that if all factors in the numerator cancel, then a factor of 1 will remain in the numerator. – 2f For example, 3a = 1 . f. g. h. i. 9ab 6ab + 4ba + 2a x– 3b Example x2 1. 5 = 1 10x 2x [dividing top and bottom by 5] 2. 10xy 2y = 3 15x [simplifying and cancelling ] x x 4w – 5 – w If powers of variables occur, these can be written as repeated multiplications before cancelling as before. 3 – x2 – 5 + 4x Example j. Q. Simplify abc – bac – cba + acb x2y3 2x 4y A. Using repeated multiplications: 3. x×x×y×y×y x2y3 = 2×x×x×x×x×y 2x 4y Find the missing term in each of the following simplifications. a. 2a – 5b – 4a + x×x×y×y×y x = 2 × x × x × x × x × y [cancelling (twice) x y and y ] = a – 5b y2 = 2x 2 Ans. p. 43 b. 5pq – 2qp – c. m + n – 2m + mn – d. – x2 – x3 + e. 7d – + 2r = 3pq – r – + = n – mn – = 2x2 – 3x3 = d2 – d Exercise B: Multiplying and dividing terms 1. Write each of the following in simplest form. a. 7a × 2b b. –3x.2y c. 5 × –3w d. –6a × –2b e. 2x.3x f. 3a × –b × 5c g. –y × 3y × –2y h. –15x.3 x © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 Apply algebraic procedures in solving problems 3 2. Simplify each of the following divisions. 10x 5 b. 6y 9y c. 10 20x d. –2pq 4q e. 8ab 2a f. 2xy 4y Order of operations The correct order of operations must be followed when simplifying expressions. The mnemonics BEMA or BEDMAS (brackets, exponents, multiplication and division, then addition and subtraction) are a useful reminder. Example 1. 3a + a × 5 = 3a + 5a = 8a 2. g. 3. 9pqr 12rst h. a a 2b Simplify the following (write the powers as repeated multiplications). a. b. c. d. ab ab4 4xy5 8x3y3 b. c. d. [divide top and bottom by 5] a. x–x×4 b. 3x – (x + x) c. 2×y+y×4 d. (1 + 5) × (4x – x) e. 2x – 8x –x 2 f. 12x – 19x 3x + 4x g. –x × –2 h. x + x × x – x2 6x 12m3np 4 4m2p2 Insert the missing numerators or denominators. a. [division line means brackets] Simplify using the correct order of operations. 9w3z 6w 4z3 2. 4. 2y + 3y (2y + 3y) = 10 10 5y = 10 y =2 [× before +] Exercise C: Order of operations 1. 2 3 3x2 5a2b 6x p2q4 = 2x = 1 ab = AS 91027 a. 2x 3 p = q © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 Insert brackets to make correct statements. a. 3 x × x + x = 6x 2 b. 8a ÷ 4 × a + 1 = 3 c. x – x – 2x – x = –x d. y + y × y – y2 = y2 e. 2 p + 4p ÷ 3 p – p = 3 f. 12w 2 ÷ w – 2 w = –12w g. a – 6a – 4 a + 2a = a h. p + q × q – q = 0 Ans. p. 43 AS 91027 4 Achievement Standard 91027 (Mathematics and Statistics 1.2) Exponents A whole number exponent (or index or power) is used to show repeated multiplication of the same base number or variable. xn = x × x × x × . . . × x 2. e. –30 f. 24 × 23 g. –5 × 52 h. –3 × –32 Simplify the following products. a. x3 × x 5 b. 3x2 × 7x4 For example, 2 × 2 × 2 × 2 × 2 is written 25 which equals 32. c. –x × 2x2 d. –2x.– 4x y 6 means y × y × y × y × y × y [six factors of y multiplied] e. 5a × 2a3 × 3a2 f. 3xy × –2x3 × xy2 g. 4a2b2.3abc.a3 h. 9a4 × 2b2 × 3ab n factors –6 × –6 is written (–6)2 which is 36 Note that –62 = –1 × 62 = –36 x 0 = 1, for any non-zero number x Example 1. 2x × 3x × 4x = 24xxx which is written 24x3 2. 5y2 × 3y5 = 5yy × 3yyyyy = 15y7 Note: x1 = x, for any number x For indices with the same base: • multiply by adding the powers: xa • × xb = 3. xa + b Simplify the following divisions. a. p6 p3 b. 12x8 6x3 c. 9a4 a d. 2x3 4x5 e. 4ab9 2b7 f. 18x4y 6 24xy 8 g. –7p 14p2q h. –9x –18x3 divide by subtracting the powers: xa = x a – b xb a If b > a, use xb = b1– a x x 3 1 e.g. x5 = 2 x x Numbers are multiplied or divided in the usual way. Example 1. x5 × x7 = x12 2. –2a3.5a4 = –10a7 3. 5abc2 × 2a2b3c = 10a3b4c3 p2 1 5. p7 = p5 Ans. p. 43 p9 4. p5 = p4 6. 4y 6 = 2y5 2y Exercise D: Multiplying and dividing with indices 1. Evaluate. a. (–3)3 b. –32 4. Find the missing terms. a. c. (–2)4 d. 12a2b2 = 2a 3b 40 b. xy × = 2x3y3 © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 Apply algebraic procedures in solving problems 5 2. To raise an exponential term to a new power, multiply the powers: (xa)b = xab Express in simplest form. a. y16 b. x20 c. 64x64 d. 100x2y 4 e. a6 4 f. p6 t10 g. 9x2 25 h. 9x2 + 16x2 All factors inside the bracket have their powers AS 91027 Powers and roots of indices a b d xadybd multiplied by the new power: x yc = cd w w Example 1. (x10)3 = x30 2. (2x3y4)5 = 21 × 5x3 ×5y4 × 5 [2 means 21] = 32x15y20 3. 2 4 x 3 2×4 =x 4 3 8 = x 81 3. To find the square root of an index expression, Use all your index rules to simplify the following. a. (2x2)3 4x b. (3p5)2 6p12 c. 4a5b4 (2ab)4 halve the power: n xn = x 2 Take the square roots of numbers in the usual way. Example 16 1. a16 = a2 36 2. 36x36 = 36 × x 2 = a8 = 6x18 Exercise E: Indices with powers and roots 1. Express in simplest form. a. (a5)3 b. (2x5)2 c. (–3x2)4 d. (5xy2)0 e. (–2w4x)3 f. a2 b3 g. 4x 3y2 h. 5x4 10xy2 Ans. p. 43 6 d. 36x 12x e. 2a2 × (3a)2 4a3 f. (3x)2 × (5x + x)2 2 3 g. 50x5 2x9 h. (3a2b3)4 6a2 × 9b4 3 © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 AS 91027 6 Achievement Standard 91027 (Mathematics and Statistics 1.2) Basic algebraic fractions c. 2ab 10bc d. 12x2y 6xy e. 42ab2 49a2b f. 2x4 4x5 g. 9a3b2 12ab4 h. 56a 64abc These are fractions with variables, such as 4 2x or 5x 3 2y Algebraic fractions obey the same rules as numerical fractions. • Simplify fractions by ‘cancelling’ common factors (using x = 1) and the laws of indices. x 5xy7 For example: 3 simplifies to 5y 4 xy • 2. Add (or subtract) algebraic fractions with the same denominator, by adding (or subtracting) numerators and putting the result over the denominator. For example: Write as a single fraction and simplify if possible. a. 3x + x 5 5 c. 2a a + 3 3 d. x – x 7 10 e. 2y 3y – 4 3 f. 3x – x 12 8 a is b g. x2 2x2 + 5 4 Exercise F: Basic algebraic fractions h. 3 – 1 4x x2 x 2x 3x + = 7 7 7 If the denominators are different, use equivalent fractions to express each fraction with the same denominator first. For example: 5a a + a = 3a + 2a = 6 2 6 3 6 2 – 3 = 4 – 15 = –11 5x 2x 10x 10x 10x • Multiply algebraic fractions, by multiplying numerators together to get the numerator of the answer, and multiplying denominators together to get the denominator of the answer. For example: b. 12y 2y – 7 7 x × x = x2 3 4 12 Simplify answers where possible. For example: 3a × 5b2 = 15ab2 = 15b 8a2 8a3b 2b 4a3 • To divide by a fraction, multiply by the reciprocal (the reciprocal of the fraction the fraction b ). a 4x2 x 4x2 6 24x2 ÷ = × = = 8x 3 3 3x 6 x Ans. p. 44 1. Simplify each of the following fractions. a. 5x 10y b. 6x 2 © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 Apply algebraic procedures in solving problems 7 3. a. 2 4x × 3x 5 b. 2a 3a × b 2b c. 5x × 2x 4y 15y d. 3a 4b × a 2b e. 3x2 × 2x3 9y y f. 7ab × c2 14a2 c 5. g. 4. 3 12x × 10y 3x 5y 4 2 h. 5p × q 4q2 15p e. 10a2b ÷ ab d cd f. 12x3y 4 6y3 ÷ 5xy 2 10x g. a3 5ab ÷ 8 b2 h. 9x5 3x4 ÷ 4y3 12y 4 Use the correct order of operations to simplify the following expressions. a. x 2x 1 + × 4 3 2 c. 3p p + ×4 4 2 p d. 7p p p – + 2 4 8 Divide the fractions and simplify your answer where possible. a. 3a a ÷ b 4 b. 2x2 ÷ 4x 9 3 c. ab ÷ d2 2c c d. 6x2 ÷ 3x 14 7 © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 b. 3y2 y 2 – ÷ 3 y 2 AS 91027 Multiply the algebraic fractions and simplify your answer where possible. AS 91027 8 Achievement Standard 91027 (Mathematics and Statistics 1.2) 2. Expanding brackets Expand and simplify the following expressions. a. 7 + 5(x – 3) b. 8 – 2(x + 4) c. x – 2(3 – x) d. 3x(4x + 1) – 6 e. 5x – 6(x + 2) Brackets are expanded using the distributive law: a(b + c) = ab + ac Example 1. 5(x + 7) = 5 × x + 5 × 7 = 5x + 35 2. x(3x – 2) = 3x2 – 2x 3. –3ab2(2a + 4b) = –3ab2 × 2a – 3ab2 × 4b = –6a2b2 – 12ab3 There may be more than two terms in the bracket. Example –6a(2a + b – 5) = –6a × 2a – 6a × b – 6a × –5 = –12a2 – 6ab + 30a Some expressions involve expanding more than one set of brackets. Take care with negative signs. Example 1. 5(x + 2) – 6(2x – 3) = 5x + 10 – 12x + 18 = –7x + 28 2. x(x – 7) –2x(x + 3) = x2 – 7x – 2x2 – 6x = –x2 – 13x Ans. p. 44 3. Expand and simplify. a. 3(2x + 6) + 2(3x – 4) b. 5(3x + 2) – (2x + 7) c. x(2x + 5) – x(3x + 4) d. 3x(4x – 3) – 5x(2x – 3) e. 7(2x + 5) – (8x – 1) f. –x(3 – x) + 2(x – 4) Exercise G: Expanding brackets 1. Expand the brackets. a. c. e. g. 2(x + 8) 5(2y – 3) 4x(2 + x) b. d. f. –3(x + 2) –4(3y – 2) 6a(2a2 + a – 4) –2xy(x2 – xy + y) © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 ANSWERS Exercise A: Algebraic expressions 1. 2. 3. (page 1) 2. 4. g. h. x a. 3x × (x + x) = 6x2 b. 8a ÷ (4 × a) + 1 = 3 c. x – x – (2x – x) = –x d. (x – 2)2 e. g. 2d – 27 h. 4m – 58 i. i. 3a + 2p d. (y + y) × y – y2 = y2 ii. d – 3a – 2p e. (2p + 4p) ÷ (3p – p) = 3 iii. d ≥ 3a + 2p f. 12w2 ÷ (w – 2w) = –12w g. a – (6a – 4a) + 2a = a h. (p + q) × (q – q) = 0 y+1 a. 12a b. –b d. 11p – 6q e. g. x– x2 j. 0 a. 3a d. 3x2; f. p + 6 –3f 2 – 3f f. 10ab + 2a x2– h. 3w – 5 i. 4x – b. 3r c. 2mn; m e. 8d; b. –6xy d. 12ab e. 6x2 g. 6y3 h. –5x2 a. 2x b. 2 d. –p 2 3pq 4st a b d. 3mnp2 a. 6x3 4b h. 1 ab y2 2x2 b. –3x b. x –1 a. –27 b. –9 c. 16 d. 1 e. –1 f. 128 g. –125 h. 27 a. x8 b. 21x6 c. –2x3 c. –15w d. 8x2 e. 30a6 f. –6x5y3 f. –15abc g. 12a6b3c h. 54a5b3 a. p3 b. 2x5 c. 9a3 d. 1 2x2 e. 2ab2 3 f. 3x2 g. –1 2pq h. 1 2 2x a. 18ab5 b. 2x2y2 2. c. 1 2x f. x 2 c. 3 2wz2 c. 4x2 4y Exercise E: Indices with powers and roots (page 5) 1. pq5 Exercise C: Order of operations a. 1. 4. b. 5a3b2 f. Exercise D: Multiplying and dividing with indices (page 4) 3. 3 e. 2 d2 14ab a. 2. c. s a. d. 1. –4x b. y + 4 g. 3. e. 1 3 7x Exercise B: Multiplying and dividing terms (page 2) 1. 18x a. 2x3 c. 5w + 3 d. 2. (page 3) c. 6y © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 a. a15 b. 4x10 c. 81x8 d. 1 e. –8w12x3 4 f. a6 g. 64x 3 27y 6 h. a. y8 b. x10 c. 8x32 d. 10xy2 3 e. a 2 f. g. 3x 5 h. 5x b x9 8y 6 p3 t5 44 Answers 3. 3 2p2 a. 2x5 b. d. x2 2 e. 9a g. 5 x2 6 8 h. 3a b c. a Exercise H: Expanding pairs of brackets (page 9) f. 324x4 1. 4 2 2 Exercise F: Basic algebraic fractions ANSWERS (page 6) 1. 2. 4. 5. a 5c f. 1 2x b. 3x d. 2x 6b e. 7a g. 3a2 4b2 h. a. 4x 5 b. 10y c. a d. 3x 70 e. –y f. 7x 13x2 20 8 15 h. 3x –2 4 g. 3. c. x 2y a. a. 3. 7 8bc 7 24 12 2 b. 3a2 c. f. bc 2a b x2 6y2 d. 6 g. 8x y h. a. 12 b b. 3x c. 2abc d. 4x e. 10a 3 f. 4x g. 8a2 5b3 y h. x d. 2x 3 5p 8 2. 1 12q 2 d c b. 4y 3 y 2. 3. b. x2 + 2x – 80 c. x2 + 3x – 18 d. x2 – 12x + 35 e. 2x2 + 11x + 15 f. 15x2 + 2x – 8 g. 15x2 – 29x + 12 a. x2 + 8x + 16 b. y2 – 6y + 9 c. x2 – 36 d. 4y2 + 20y + 25 e. 9y2 – 4 f. 9x2 – 6x + 1 a. 3x2 + 12x – 96 b. –2p2 + 16p – 32 c. 2x3 – 9x2 + 10x d. –8 + 36a – 36a2 e. 8x a. 7(x + 3) b. a(3 + b) c. y(x – y) d. 5x(x + 2) e. –3p(p – 4) f. ab(c – b) g. a(a – b + c) h. 2(4 – 2x2 + y) a. 2x3(x2 – 2) b. 3y2(2 + y2) c. x2y4(x + y) d. 4ab2(2ab – 1) e. p2(p2 – p + 2) f. 3x2(4x – 1) g. 2x8(x2 – 2) h. x8(1 + x8) Exercise J: Factorising quadratics (page 11) 2 c. 5 Exercise G: Expanding brackets (page 8) 1. x2 + 9x + 20 Exercise I: Factorising using the distributive law (page 10) 1. 4x 5 e. 2x2 3y a. 2. a. a. 2x + 16 b. –3x – 6 c. 10y – 15 d. –12y + 8 e. 8x + 4x2 f. 12a3 + 6a2 – 24a g. –2x3y + 2x2y2 – 2xy2 a. 5x – 8 b. –2x c. 3x – 6 d. 12x2 + 3x – 6 e. –x – 12 a. 12x + 10 b. 13x + 3 c. –x2 + x d. 2x2 + 6x e. 6x + 36 f. x2 – x – 8 1. 2. 3. 4. a. (x + 5)(x + 2) b. (x + 6)(x + 7) c. (x – 8)(x + 6) d. (x + 8)(x – 5) e. (x + 4)(x – 4) f. (5y + 1)(5y – 1) g. (x – 8)(x – 3) h. (a – 7)(a + 3) a. 3(x + 5)(x – 4) b. 5(x + 2)(x – 2) c. 2(x + 6)(x – 3) d. 5(x – 4)(x + 3) e. 2(x – 7)(x – 4) f. 10(x + 2)(x + 1) g. 8(x + 3)(x – 3) h. –(x – 8)(x – 4) a. (2x + 1)(x + 3) b. (3x + 2)(x + 2) c. (5x + 1)(x – 2) d. (7x – 1)(x + 1) e. (4x + 3)(x + 2) f. (3x – 2)(2x + 1) g. (11x – 3)(x – 2) h. (2x + 5)(2 – x) a. (x + 4)(x – 4) b. 4x(x + 2) c. (x – 4)(x + 3) d. 3x(x – 5) e. cannot be factorised © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4 INDEX add (fractions) 6 algebraic expression 1 algebraic fractions 12 multiply (fractions) 6 BEDMAS 3 BEMA 3 perfect squares 9 power (index) 2, 4 product 1 changing subject of formula 21 coefficient 1 difference of two squares 9 distributive law 8 divide (fractions) 6 elimination method 23 exponent 4 exponential equations 34 factorised 10 formula 20 operations 1 quadratic equations 28 quadratic expressions 11 reciprocal 6 repeated multiplication 2 simplified fraction 6 simultaneous equations 23 subject of the formula 21 substituting 20 substitution method 26 terms (algebraic) 1 index 4 indices 2 variable 1 like terms 1 linear equations 14 linear inequations 17 © ESA Publications (NZ) Ltd, Freephone 0800-372 266, ISBN 978-1-927297-67-4