Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name: ______________________ Class: _________________ Date: _________ Geometry Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the missing reason in the two-column proof? ⎯⎯ → ⎯⎯ → Given: AC bisects ∠DAB and CA bisects ∠DCB Prove: ΔDAC ≅ ΔBAC Statements Reasons 1. AC bisects ∠DAB 2. ∠DAC ≅ ∠BAC 3. AC ≅ AC 1. Given 2. Definition of angle bisector 3. Reflexive property 4. CA bisects ∠DCB 5. ∠DCA ≅ ∠BCA 6. ΔDAC ≅ ΔBAC 4. Given 5. Definition of angle bisector 6. ? ⎯⎯ → ⎯⎯ → A. AAS Theorem B. ASA Postulate C. SAS Postulate D. SSS Postulate 2. Use the information given in the diagram. Tell why AC ≅ AC and ∠BCA ≅ ∠DAC. A. B. C. D. Reflexive Property, Given Transitive Property, Reflexive Property Given, Reflexive Property Reflexive Property, Transitive Property 1 ID: A Name: ______________________ ID: A 3. What is the measure of a base angle of an isosceles triangle if the vertex angle measures 34° and the two congruent sides each measure 21 units? A. 73° B. 78° C. 156° D. 146° 4. The two triangles are congruent as suggested by their appearance. Find the value of d. The diagrams are not to scale. A. 17 B. 90 C. 30 5. If BCDE is congruent to OPQR, then DE is congruent to A. PQ B. OR D. 60 ? . C. OP D. QR 6. What other information do you need in order to prove the triangles congruent using the SAS Congruence Postulate? A. ∠CBA ≅ ∠CDA B. AC ⊥ BD C. ∠BAC ≅ ∠DAC D. AC ≅ BD 2 Name: ______________________ ID: A 7. What is the measure of the vertex angle of an isosceles triangle if one of its base angles measures 54°? A. 63° B. 108° C. 126° D. 72° 8. Justify the last two steps of the proof. Given: RS ≅ UT and RT ≅ US Prove: ΔRST ≅ ΔUTS Proof: 1. RS ≅ UT 2. RT ≅ US 3. ST ≅ TS 4. ΔRST ≅ ΔUTS 1. Given 2. Given 3. ? 4. ? A. Symmetric Property of ≅; SSS B. Symmetric Property of ≅; SAS C. Reflexive Property of ≅; SSS D. Reflexive Property of ≅; SAS 9. From the information in the diagram, can you prove ΔFDG ≅ ΔFDE? Explain. A. yes, by ASA B. yes, by SAS C. yes, by AAA D. no 3 Name: ______________________ ID: A 10. What theorem or postulate allows you to prove the triangles congruent? A. ASA B. AAS C. SAS D. not possible 11. What else must you know to prove the triangles congruent by ASA? A. ∠ADC ≅ ∠CAB; B. ∠ACD ≅ ∠CAB; C. ∠CAD ≅ ∠CBA; D. ∠ACD ≅ ∠CBA; 12. Based on the given information, what can you conclude, and why? Given: ∠H ≅ ∠L, HJ ≅ JL A. ΔHIJ ≅ ΔLKJ by ASA B. ΔHIJ ≅ ΔLKJ by SAS C. ΔHIJ ≅ ΔJLK by AAS D. ΔHIJ ≅ ΔJLK by HL 4 Name: ______________________ ID: A 13. Name the theorem or postulate that lets you immediately conclude ΔABD ≅ ΔCBD. A. ASA B. SAS C. AAS D. none of these 14. Which congruence statement does NOT necessarily describe the triangles shown if ΔDEF ≅ ΔFGH? A. ΔFED ≅ ΔHGF B. ΔEFD ≅ ΔGHF C. ΔFDE ≅ ΔFGH D. ΔEDF ≅ ΔGFH 5 Name: ______________________ ID: A 15. Supply the missing reasons to complete the proof. Given: ∠Q ≅ ∠T and QR ≅ TR Prove: PR ≅ SR Statement 1. ∠Q ≅ ∠T and Reasons 1. Given QR ≅ TR 2. ∠PRQ ≅ ∠SRT 2. Vertical angles are congruent. 3. ΔPRQ ≅ ΔSRT 3. ? 4. PR ≅ SR 4. ? A. AAS; CPCTC B. ASA; Substitution C. SAS; CPCTC D. ASA; CPCTC 16. What additional information will allow you to prove the triangles congruent by the HL Theorem? A. AC ≅ BD B. ∠A ≅ ∠E C. AC ≅ DC D. m∠BCE = 90 6 Name: ______________________ ID: A 17. Find AB. A. AB = 20 B. AB = 10 C. AB = 54 D. AB = 12 18. In each pair of triangles, parts are congruent as marked. Which pair of triangles is congruent by ASA? A. C. B. D. 7 Name: ______________________ ID: A 19. Free Response ΔABC ≅ ΔDEF. AB = 3y, ED = x, AC = 16 - y and DF = x + 4. Solve for x and y. A. x = B. y = Multiple Response Identify one or more choices that best complete the statement or answer the question. 20. In the diagram, point E is the midpoint of segments CA and BD. Which statements about the diagram are true? A. ∠BEA ≅ ∠DCE B. The value of x is 14. C. The value of y is −10. D. ∠BEA ≅ ∠DEC E. CDE ≅ BAE F. EBA ≅ EDC 8 Name: ______________________ ID: A Short Answer 21. Find the measure of each acute angle. Essay 22. Write a two-column proof. Given: BC ≅ EC and AC ≅ DC Prove: BA ≅ ED 23. Write a two-column proof: Given: ∠BAC ≅ ∠DAC, ∠DCA ≅ ∠BCA Prove: BC ≅ CD 9 Name: ______________________ ID: A Other Write a proof. 24. Given ∠N ≅ ∠P, NO ≅ PL Prove NOM ≅ PLM 25. Given J is the midpoint of KM, JL⊥KM Prove JKL ≅ JML 10 ID: A Geometry Chapter 5 Test Answer Section MULTIPLE CHOICE 1. ANS: REF: OBJ: TOP: 2. ANS: OBJ: TOP: 3. ANS: OBJ: STA: KEY: 4. ANS: OBJ: TOP: 5. ANS: OBJ: TOP: 6. ANS: REF: STA: KEY: 7. ANS: OBJ: STA: KEY: 8. ANS: REF: STA: KEY: 9. ANS: REF: OBJ: TOP: 10. ANS: REF: OBJ: TOP: 11. ANS: REF: OBJ: TOP: B PTS: 1 DIF: L2 4-3 Triangle Congruence by ASA and AAS 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 4-3 Example 4 KEY: ASA | proof A PTS: 1 DIF: L2 REF: 4-1 Congruent Figures 4-1.1 Congruent Figures STA: CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 4-1 Example 4 KEY: congruent figures | corresponding parts | proof A PTS: 1 DIF: L2 REF: 4-5 Isosceles and Equilateral Triangles 4-5.1 The Isosceles Triangle Theorems CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 TOP: 4-5 Example 2 isosceles triangle | Converse of Isosceles Triangle Theorem | Triangle Angle-Sum Theorem D PTS: 1 DIF: L2 REF: 4-1 Congruent Figures 4-1.1 Congruent Figures STA: CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 4-1 Example 1 KEY: congruent figures | corresponding parts D PTS: 1 DIF: L2 REF: 4-1 Congruent Figures 4-1.1 Congruent Figures STA: CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 4-1 Example 1 KEY: congruent figures | corresponding parts | word problem B PTS: 1 DIF: L2 4-2 Triangle Congruence by SSS and SAS OBJ: 4-2.1 Using the SSS and SAS Postulates CA GEOM 2.0| CA GEOM 5.0 TOP: 4-2 Example 2 SAS | reasoning D PTS: 1 DIF: L2 REF: 4-5 Isosceles and Equilateral Triangles 4-5.1 The Isosceles Triangle Theorems CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 TOP: 4-5 Example 2 isosceles triangle | Isosceles Triangle Theorem | Triangle Angle-Sum Theorem | word problem C PTS: 1 DIF: L2 4-2 Triangle Congruence by SSS and SAS OBJ: 4-2.1 Using the SSS and SAS Postulates CA GEOM 2.0| CA GEOM 5.0 TOP: 4-2 Example 1 SSS | reflexive property | proof A PTS: 1 DIF: L2 4-3 Triangle Congruence by ASA and AAS 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 4-3 Example 3 KEY: ASA | reasoning B PTS: 1 DIF: L3 4-3 Triangle Congruence by ASA and AAS 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 4-3 Example 3 KEY: ASA | AAS | reasoning B PTS: 1 DIF: L2 4-3 Triangle Congruence by ASA and AAS 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 4-3 Example 3 KEY: ASA | SAS | reasoning 1 ID: A 12. ANS: A PTS: 1 DIF: L2 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 TOP: 4-3 Example 4 KEY: ASA | reasoning 13. ANS: B PTS: 1 DIF: L2 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 TOP: 4-3 Example 3 KEY: ASA | AAS | SAS 14. ANS: C PTS: 1 DIF: L2 REF: 4-1 Congruent Figures OBJ: 4-1.1 Congruent Figures STA: CA GEOM 4.0| CA GEOM 5.0| CA GEOM 12.0 TOP: 4-1 Example 1 KEY: congruent figures | corresponding parts 15. ANS: D PTS: 1 DIF: L2 REF: 4-4 Using Congruent Triangles: CPCTC OBJ: 4-4.1 Proving Parts of Triangles Congruent STA: CA GEOM 5.0| CA GEOM 6.0 TOP: 4-4 Example 1 KEY: ASA | CPCTC | proof 16. ANS: C PTS: 1 DIF: L2 REF: 4-6 Congruence in Right Triangles OBJ: 4-6.1 The Hypotenuse-Leg Theorem STA: CA GEOM 2.0| CA GEOM 5.0 TOP: 4-6 Example 1 KEY: HL Theorem | right triangle | reasoning 17. ANS: C PTS: 1 DIF: Level 1 REF: Geometry Sec. 6.1 NAT: HSG-CO.C.9 | HSG-MG.A.1 KEY: perpendicular bisector NOT: Example 1 18. ANS: D PTS: 1 DIF: L2 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 TOP: 4-3 Example 1 KEY: ASA 19. ANS: A PTS: 1 DIF: L3 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem STA: CA GEOM 2.0| CA GEOM 5.0 KEY: ASA | AAS NOT: x = 9, y = 3 MULTIPLE RESPONSE 20. ANS: NAT: KEY: NOT: B, D, F PTS: 1 DIF: Level 2 REF: Geometry Sec. 5.2 HSG-CO.B.7 Third Angles Theorem | corresponding parts | congruent figures Combined Concept SHORT ANSWER 21. ANS: 26°, 64° PTS: 1 DIF: Level 1 NAT: HSG-CO.C.10 NOT: Example 4 REF: Geometry Sec. 5.1 KEY: interior angles 2 ID: A ESSAY 22. ANS: [4] Statement 1. 2. 3. 4. BC ≅ EC and AC ≅ DC ∠BCA ≅ ∠ECD ΔBCA ≅ ΔECD BA ≅ ED Reason 1. Given 2. Vertical angles are congruent. 3. SAS 4. CPCTC [3] correct idea, some details inaccurate [2] correct idea, not well organized [1] correct idea, one or more significant steps omitted PTS: 1 DIF: L4 REF: 4-4 Using Congruent Triangles: CPCTC OBJ: 4-4.1 Proving Parts of Triangles Congruent STA: CA GEOM 5.0| CA GEOM 6.0 KEY: CPCTC | congruent figures | proof | SAS | rubric-based question | extended response 23. ANS: [4] Statement Reason 1. ∠BAC ≅ ∠DAC and 1. Given ∠DCA ≅ ∠BCA 2. Reflexive Property 2. CA ≅ CA 3. ΔCBA ≅ ΔCDA 3. ASA 4. CPCTC 4. BC ≅ CD [3] correct idea, some details inaccurate [2] correct idea, not well organized [1] correct idea, one or more significant steps omitted PTS: 1 DIF: L4 REF: 4-4 Using Congruent Triangles: CPCTC OBJ: 4-4.1 Proving Parts of Triangles Congruent STA: CA GEOM 5.0| CA GEOM 6.0 KEY: ASA | CPCTC | congruent figures | corresponding parts | rubric-based question | extended response | proof 3 ID: A OTHER 24. ANS: STATEMENTS 1. M is the midpoint of LO and REASONS 1. Given NP, NO ≅ PL 2. NM ≅ PM, LM ≅ OM 3. ∠N ≅ ∠P 2. Definition of midpoint 4. ∠NMO ≅ ∠PML 5. ∠O ≅ ∠L 6. NOM ≅ PLM 4. Vertical Angles Congruence Theorem 5. Third Angles Theorem 6. All corresponding parts are congruent. PTS: 1 DIF: Level 1 NAT: HSG-CO.B.7 NOT: Example 5 25. ANS: STATEMENTS 3. Given REF: Geometry Sec. 5.2 KEY: congruent figures | congruent triangles 1. J is the midpoint of KM. REASONS 1. Given 2. KJ ≅ MJ 2. Definition of midpoint 3. JL⊥KM 3. Given 4. ∠LJMand ∠LJK are right angles. 4. Definition of perpendicular lines 5. ∠LJM ≅ ∠LJK 5. Right Angles Congruence Theorem 6. Reflexive Property of Congruence 6. LJ ≅ LJ 7. JKL ≅ JML PTS: 1 DIF: Level 1 NAT: HSG-CO.B.8 | HSG-MG.A.1 NOT: Example 1 7. SAS Congruence Theorem REF: Geometry Sec. 5.3 KEY: congruent triangles | SAS Congruence Theorem 4