Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Numbers, Operations, and Expressions Review of Natural Numbers, Whole Numbers, Integers, and Rational Numbers Classwork 1) Determine the classification(s) for each number below. List all that apply. 3 a) 11 b) –9.8 c) –21 30 d) 3 Review of Natural Numbers, Whole Numbers, Integers, and Rational Numbers Homework 2) Determine the classification(s) for each number below. List all that apply a) 2 3 b) 7 c) 0 72 d) − 6 e) 345.3 Review of Exponents, Squares and Square Roots Classwork 3) Simplify a) √121 b) 132 c) √225 d) 172 4) Determine the square root of each number. If the square root does not exist, write “no real solution” 121 a) √49 h) √− 256 b) √−25 196 c) −√289 i) −√ 625 d) √−64 j) √0.64 e) √152 2 k) −√0.0144 f) −(√36) l) √−0.0169 49 g) √ m) √3.24 144 5) Estimate each square root to the nearest integer a) √39 b) √24 c) −√226 d) −√10 e) √130 f) −√292 NJ Center for Teaching and Learning ~1~ www.njctl.org Review of Exponents, Squares and Square Roots Homework 6) Simplify a) √169 b) 192 c) √625 d) 122 7) Determine the square root of each number. If the square root does not exist, write “no real solution” 144 a) √−100 h) −√ 289 b) √625 400 c) −√324 i) √− 81 d) √−36 j) √0.25 2 e) √8 2 k) √−0.0064 f) −(√9) l) −√0.0016 9 g) √ m) √2.25 676 8) Estimate each square root to the nearest integer a) −√96 b) √37 c) √578 d) −√116 e) −√200 f) √411 Review of Irrational Numbers & Real Numbers Classwork 9) Determine the classification(s) for each real number below. List all that apply. a. √100 b. √15 4 c. 9 d. 0 e. –10.46 f. –11 g. 𝜋 21 h. 3 10) Determine whether each statement is true or false. Justify your answer. a) The sum of two rational numbers is rational b) The sum of a rational number and irrational number is rational. c) The product of a nonzero rational number and an irrational number is irrational. NJ Center for Teaching and Learning ~2~ www.njctl.org Review of Irrational Numbers & Real Numbers Homework 11) Determine the classification(s) for each real number below. List all that apply. a) √65 b) −√25 c) 12 2 d) 5 e) f) g) h) √0 𝜋 − 6 12,385.93 –876 12) Determine whether each statement is true or false. Justify your answer. a) The sum of two rational numbers is irrational b) The sum of a rational number and irrational number is irrational. c) The product of a nonzero rational number and an irrational number is rational. Properties of Exponents Classwork 13) Simplify each expression using the properties of exponents. a) 𝑔7 ∙ 𝑔6 l) 𝑤 7 ÷ 𝑢−9 b) ℎ8 ÷ ℎ3 m) 𝑥 −4 ∙ 𝑦 7 ∙ 𝑧 −3 8𝑎4 𝑏 −5 𝑐 6 c) 𝑗 2 ∙ 𝑗 4 n) d) e) f) g) h) i) j) k) 𝑘7 𝑘2 o) 𝑥 5 ∙ 𝑥 11 𝑦 8 ÷ 𝑦10 90 7(20 ) 8 + 30 11 − 3(60 ) 𝑥 5 ∙ 𝑦 −8 p) q) r) s) t) 32𝑎−3 𝑏 2 𝑐 3 10𝑑 −2 𝑒 5 𝑓 −7 25𝑑 3 𝑒 −1 𝑓 −2 (𝑎4 )5 (𝑑 7 )4 (𝑏𝑐 3 )2 (2𝑒 2 𝑓 −3 𝑔5 )4 ( −2 8ℎ4 𝑗 5 𝑘 −3 3ℎ−2 𝑗 −3 𝑘 ) Properties of Exponents Homework 14) Simplify each expression using the properties of exponents. a) 𝑝4 ÷ 𝑝3 l) 𝑐 8 ÷ 𝑑 −10 7 4 b) 𝑞 ∙ 𝑞 m) 𝑒 5 ∙ 𝑓 −7 ∙ 𝑔4 c) d) e) f) g) h) i) j) k) 𝑟9 n) 𝑟3 3 𝑡 ∙ 𝑡4 𝑢5 ÷ 𝑢11 𝑣 8 ∙ 𝑣 10 50 13 + 90 8(40 ) 15 + 4(70 ) 𝑎−5 ∙ 𝑏 7 NJ Center for Teaching and Learning o) p) q) r) s) t) ~3~ 9ℎ −4 𝑗 5 𝑘 −6 27ℎ3 𝑗 −2 𝑘 3 18𝑥 −1 𝑦 −5 𝑧 7 42𝑥 4 𝑦 −1 𝑧 −2 (𝑢3 )9 (𝑣 5 )6 (𝑎4 𝑏)3 (3𝑟 −2 𝑠 4 𝑡 2 )3 ( 5𝑐 −3 𝑑 5 𝑒 3 7𝑐 4 𝑑 −2 𝑒 −2 ) www.njctl.org Like Terms Classwork Create a like term for the given term. 15) 4x 16) 13y 17) 15x2 18) 16xy 19) x Simplify the expression if possible. 20) 7x + 8x 21) 6x + 8y + 2x 22) 15x2 + 5x2 23) 5x +2(x + 8) 24) -10y + 4y 25) 9(x + 5) + 7(x – 3) 26) 8 + (x – 4)2 27) 7y + 8x + 3y + 2x 28) 29) 30) 31) 32) 33) 34) x + 2x x2 + 5x2 2x + 4x + 3 6y – 3y 9y + 4y – 2y + y x + 5x + x + 12 8x – 3x + 2x + 15 48) 49) 50) 51) 52) 53) 54) x + 2x + x + 5x 6x2 + 5x2 12x + 14x + 3y 6y – 3y + 6xy + 4xy 9y + 4y – 2y + y + y2 x + 5x + x + 12 – 7x 8x – 3x + 2x + 15 – 7y Like Terms Homework Create a like term for the given term. 35) 6x 36) Y 37) 10x2 38) 14xy 39) -5x Simplify the expression if possible. 40) 17x + 18x + 3 41) 6x + 8y - 2x – y 42) 15x2 + 5x2 + 2x 43) 5x +2(x + 8) + 3 44) -10y + 4y – 5 45) 9(x - 5) + 7(x + 3) 46) 18 + (x – 4)2 – 4 47) 7y + 8x + 3y + 2x + 9 Evaluating Expressions Classwork Evaluate the expression for the given value 55) (2n + 1)2 for n = 3 56) 2(n + 1)2 for n = 4 57) 2n + 22 for n = 3 58) 4x + 3x for x = 5 59) 3(x – 3) for x = 7 60) 8(x + 5)(x – 2) for x = 4 61) 3x2 for x = 2 NJ Center for Teaching and Learning ~4~ www.njctl.org 62) 5x + 45 for x = 6 4𝑥 63) for x = 10 5 64) 4y + x for x = 2 and y = 3 𝑥 65) + 17 for x = 12 and y = ½ 𝑦 66) 6x + 8y for x = 9 and y = ¼ 67) x + (2x – 8) for x = 10 68) 5(3x) + 8y for x = 2 and y = 10 Evaluating Expressions Homework Evaluate the expression for the given value 69) (2n + 1)2 for n = 1 70) 2(n + 1)2 for n = 3 71) 2n + 22 for n = 5 72) 4x + 3x for x = 6 73) 3(x – 3) for x = 3 74) 8(x + 5)(x – 2) for x = 6 75) 3x2 for x = 8 76) 5x + 45 for x = 3 4𝑥 77) for x = 15 5 78) 4y + x for x = 12 and y = 13 𝑥 79) + 17 for x = 2 and y = ½ 𝑦 80) 6x + 8y for x = 8 and y = ¾ 81) x + (2x – 8) for x = 11 82) 5(3x) + 8y for x = 12 and y = 5 Ordering Expressions Classwork Order the terms by the degree of the variable in each expression. 83) 𝑥 + 12 − 4𝑥 3 − 5𝑥 2 84) 𝑤 2 + 10𝑤 − 8𝑤 3 − 3 + 5𝑤 4 85) 60 − 12𝑥𝑦 + 2𝑥 2 − 7𝑦 2 86) 34𝑢𝑣 − 8𝑢6 𝑣 5 + 42𝑢2 𝑣 2 − 52 − 15𝑢4 𝑣 4 87) 18𝑥𝑦 2 − 𝑥 3 + 81 − 7𝑥 2 𝑦 + 8𝑦 3 Ordering Expressions Homework Order the terms by the degree of the variable in each expression. 88) 11𝑥 2 − 4𝑥 + 17 − 3𝑥 3 89) 2𝑤 3 − 20𝑤 + 8𝑤 4 − 8 + 9𝑤 2 90) −13𝑝𝑞 − 19 + 3𝑝2 − 8𝑞 2 91) 36 − 14𝑢4 𝑣 3 + 23𝑢5 𝑣 4 − 54𝑢𝑣 − 5𝑢3 𝑣 2 92) 9 + 5𝑦 3 − 2𝑥 3 + 𝑥𝑦 2 − 20𝑥 2 𝑦 NJ Center for Teaching and Learning ~5~ www.njctl.org Answer Key 1. a. b. c. d. Rational Rational Rational, Integer Rational, Integer, Whole, Natural a. b. c. d. e. Rational, Integer, Whole, Natural Rational Rational, Integer, Whole Rational, Integer Rational a. b. c. d. 11 169 15 289 a. b. c. d. e. f. g. h. i. j. k. l. m. 7 no real solution -17 no real solution 15 -36 a. b. c. d. e. f. 6 5 -15 -3 11 -17 a. b. c. d. 13 361 25 144 a. b. c. d. e. f. g. no real solution 25 -18 no real solution 8 -9 j. k. l. m. 0.5 no real solution -0.04 1.5 a. b. c. d. e. f. -10 6 -24 -11 -14 20 a. b. c. d. e. f. g. h. Rational, Integer, Whole, Natural Irrational Rational Rational, Integer, Whole Rational Rational, Integer Irrational Rational, Integer, Whole, Natural 8. 2. 3. 9. 4. 10. a. True: If two rational numbers (or fractions) are added together, then the result has to be another rational number 3 5 18 (or fraction). For example, + = + 7 12 no real solution 14 − 25 0.8 -0.12 no real solution 1.8 20 24 38 24 = 19 12 4 𝑎𝑑+𝑏𝑐 6 24 , which is still a rational 𝑎 𝑐 𝑎𝑑 𝑏 𝑑 𝑏𝑑 number. In general, if + = + 𝑏𝑐 𝑏𝑑 6. 11. a. b. c. d. e. f. g. h. 7. 3 Irrational Rational, Integer Rational, Integer, Whole, Natural Rational Rational, Integer, Whole Irrational Rational Rational, Integer 12. 12 h. − 17 i. no real solution NJ Center for Teaching and Learning = , where a, b, c and d are integers, 𝑏 ≠ 0, 𝑑 ≠ 0, then the sum is rational. 1 b. False: Counterexample = + 𝜋 cannot 2 be simplified. If you perform the sum with the decimal equivalents, 0.5 + 3.14159… = 3.64159… c. True: If a rational number, not equal to 0, and an irrational number are multiplied together, the result has to be irrational. For example, 2 ∙ √3 = 2(1.73205 … ) = 3.46410 …, which is still irrational 𝑏𝑑 5. 26 = ~6~ www.njctl.org 3 5 18 4 6 24 a. False: Counterexample: + = 20 38 19 + m. = = , which is a rational number, 24 24 12 not an irrational number. b. True: If a rational number and irrational number are added together, the result is 1 an irrational. For example, + 𝜋 cannot 2 be simplified. If you perform the sum with the decimal equivalents, 0.5 + 3.14159… = 3.64159…, which is an irrational number. c. False: For example, 2 ∙ √3 = 2(1.73205 … ) = 3.46410 …, which is an irrational number. 13. a. b. c. d. e. f. 𝑔13 ℎ5 𝑗6 𝑘5 𝑥 16 g. h. i. j. 1 7 9 8 k. l. m. n. o. 1 𝑦2 𝑥5 𝑦8 9 𝑢 𝑤7 𝑦7 𝑥4𝑧 3 𝑎4 𝑐 3 4𝑏 7 2𝑒 6 5𝑑 5 𝑓 5 20 p. 𝑎 q. 𝑑 28 r. 𝑏 2 𝑐 6 s. t. 16𝑒 8 𝑔20 𝑓 12 9𝑘 8 64ℎ12 𝑗 16 14. a. b. c. d. e. f. g. h. i. j. k. l. p 𝑞11 𝑟6 𝑡7 1 𝑢6 18 𝑣 1 14 8 19 𝑏7 𝑎5 8 10 𝑐 𝑑 NJ Center for Teaching and Learning ~7~ n. o. 𝑒 5 𝑔4 𝑓7 𝑗7 3ℎ7 𝑘 9 3𝑧 9 7𝑥 5 𝑦 4 p. 𝑢27 q. 𝑣 30 r. 𝑎12 𝑏 3 s. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 27𝑠 12 𝑡 6 𝑟6 49𝑐 14 t. 25𝑑 14 𝑒 4 Multiple Answers ex:2(2x) Multiple Answers ex:26y/2 Multiple Answers ex:(3x)(5x) Multiple Answers (4x)(4y) Multiple Answers ex:x2/x 15x 8x+8y 20x2 7x+16 -6y 16x+24 2x 10y+10x 3x 6x2 6x+3 3y 12y 7x+12 7x+15 Multiple Answers ex: 3(2x) Multiple Answers ex. 5y – 4y Multiple Answers ex. 5x(2x) Multiple Answers ex. 7x(2y) Multiple Answers ex. 5x – 10x 35x+3 4x+7y 20x2+2x 7x+19 -6y-5 16x-24 2x+6 10y+10x+9 9x 11x2 26x+3y 3y+10xy 12y+y2 12 7x+15-7y 49 50 10 35 www.njctl.org 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 12 144 12 75 8 14 41 56 22 110 9 32 14 42 0 352 192 60 12 64 21 54 25 220 NJ Center for Teaching and Learning 83. 84. −4𝑥 3 − 5𝑥 2 + 𝑥 + 12 85. 5𝑤 4 − 8𝑤 3 + 𝑤 2 + 10𝑤 − 3 86. 2𝑥 2 − 12𝑥𝑦 − 7𝑦 2 + 60 or −7𝑦 2 − 12𝑥𝑦 + 2𝑥 2 + 60 87. −8𝑢6 𝑣 5 − 15𝑢4 𝑣 4 + 42𝑢2 𝑣 2 + 34𝑢𝑣 − 52 88. −𝑥 3 − 7𝑥 2 𝑦 + 18𝑥𝑦 2 + 8𝑦 3 + 81 or 8𝑦 3 + 18𝑥𝑦 2 − 7𝑥 2 𝑦 − 𝑥 3 + 81 89. −3𝑥 3 + 11𝑥 2 − 4𝑥 + 17 90. 8𝑤 4 + 2𝑤 3 + 9𝑤 2 − 20𝑤 − 8 91. 3𝑝2 − 13𝑝𝑞 − 8𝑞 2 − 19 or −8𝑞 2 − 13𝑝𝑞 + 3𝑝2 − 19 92. 23𝑢5 𝑣 4 − 14𝑢4 𝑣 3 − 5𝑢3 𝑣 2 − 54𝑢𝑣 + 36 93. −2𝑥 3 − 20𝑥 2 𝑦 + 𝑥𝑦 2 + 5𝑦 3 + 9 or 5𝑦 3 + 𝑥𝑦 2 − 20𝑥 2 𝑦 − 2𝑥 3 + 9 ~8~ www.njctl.org