Download Unit 8 chap 8 polynomials notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Algebra 1B
Unit 08
Sections 8.1-8.2,8.4-8.7
GUIDED NOTES
NAME _________________________
Teacher _______________
Period ___________
1
Date: ______________________
Section 8-1: Multiplying Monomials
Notes – Part A
MULTIPLY MONOMIALS
Monomial:
Constant:
Example #1: Determine if each expression is a monomial. Explain your reasoning.
1.) 17 – s
2.) 8f2g
3.)
¾
4.) xy
5.)
h
k
6.) p + q
7.) x
8.)
abc 8
5
2
Product of Powers:
Example #2: Simplify each expression. Show all work!
1.) (r4) (- 12r7)
2.) (6cd) (5c5d2)
3.) (5x7) (x6)
4.) (4ab6) (- 7 a2b3)
3
Date: ______________________
Section 8-1: Multiplying Monomials
Notes – Part B
POWERS OF MONOMIALS
Power of a Power:
Example #1: Simplify each expression. Show all work!
1.) { [ (-3)2 ]3 } 2
2.) [ (23)3 ] 2
3.) [ (23)2 ] 3
4.) [ (33)2 ] 4
4
Power of a Product:
Example #2: Simplify each expression. Show all work!
1.) (3y5z)2
2.) (5xyz)3
3.) (x2y5)3
4.) 2 (a4b2)7
5
Date: ______________________
Section 8-2: Dividing Monomials
Notes – Part A
QUOTIENTS OF MONOMIALS
Quotient of Powers:
Example #1: Simplify each expression. Show all work!
1.)
a 5b 8
ab 3
3.)
78
73
2.)
x 7 y 12
x6 y3
4.)
− 5 pq 7
10 p 6 q 3
6
Negative Exponents:
Example #2: Simplify each expression. Show all work!
1.)
3.)
b − 3c 2
d −5
x −6
y −4 z 9
2.)
− 3a − 4 b 7
21a 2 b 7 c − 5
4.)
75 j 3 k − 5
15 j 5 k − 4 l − 8
7
Date: ______________________
Section 8-2: Dividing Monomials
Notes – Part B
QUOTIENTS OF EXPONENTS
Zero Exponent:
Example #1: Simplify each expression. Show all work!
 3x 5 y 
1.)  −

 8 xy 7 
0
 12m8 n 7 
3.) 

 8m5 n 10 
2.)
t 3s0
t2
4.)
b 0c8
c2
0
8
Power of a Quotient:
Example #2: Simplify each expression. Show all work!
 2 p2 
1.) 

 3 
4
 2c 3 d 
3.) 

 7z 2 
 4c 3 d 2 
2.) 

 5e 4 f 7 
3
 2x5 y 
4.) 

 5xy 7 
3
−3
9
Date: ______________________
Section 8-4: Polynomials
Notes
DEGREE OF POLYNOMIAL
Polynomial:
Example #1: State whether each expression is a polynomial. If yes, identify it as a monomial,
binomial, or trinomial.
1.) 6 – 4
2.) x2 + 2xy – 7
14d + 19e 2
5d 4
3.) 26b
4.)
5.) 2x – 3yz
6.) 8n3 + 5n-2
7.) - 8
8.) 4n2 + 5a + a + 9
5
10
Degree of a Polynomial:
Example #2: Find the degree of each polynomial.
9.) 12 + 5b + 6bc + 8bc2
10.) 9x2 – 2x – 4
11.) 14g2h5i
12.) 5mn2
13.) -4x2y2 + 3x2 + 5
14.) 3a + 7ab – 2a2b + 16
Example #3: Arrange the terms of each polynomial so that the powers of x are in ascending order.
15.) 16 + 14x3 + 2x – x2
16.) 7y2 + 4x3 + 2xy3 – x2y2
17.) 7x2 + 2x4 – 11
18.) 2xy3 + 5x3 – y2 – 3x2y
Example #4: Arrange the terms of each polynomial so that the powers of x are in descending order.
19.) 6x2 + 5 – 8x – 2x3
20.) 3a3x2 – a4 + 4ax5 + 9a2x
21.) 8 + 7x2 – 12xy3 – 4x3y
22.) a4 + ax2 – 2a3xy3 – 9x4y
11
Date: ______________________
Section 8-5: Adding and Subtracting Polynomials
Notes
ADD POLYNOMIALS
Example 1: Find (3x2 – 4x + 8) + (2x – 7x2 – 5). Show all work!
Example 2: Find (7y2 + 2y – 3) + (2 – 4y + 5y2). Show all work!
Example 3: Find
Example 4: Find
3x 2 − 2 x + 1
+ x 2 + 4 x− 3
2x 2 + 5
+ 6− 2 x + 3x 2
. Show all work!
. Show all work!
12
SUBTRACT POLYNOMIALS
Example 5: Find (3n2 + 13n3 + 5n) - (7n +4n3). Show all work!
Example 6: Find (6y2 + 8y4 – 5y) - (9y4 – 7y + 2y2). Show all work!
Example 7: Find
Example 8: Find
5x + 4
. Show all work!
− ( − 2 x + 3)
8x+ 4
− (6 x 2 − 3+ x )
. Show all work!
13
Date: ______________________
Section 8-6: Multiplying a Polynomial by a Monomial
Notes – Part A
PRODUCT OF MONOMIAL AND POLYNOMIAL
Example 1: Find – 2x2 (3x2 – 7x + 10). Show all work!
Example 2: Find 6y (4y2 – 9y – 7). Show all work!
Example 3: Find -4xy (5x2 – 12xy + 7y2). Show all work!
14
Example 4: Simplify 4 (3d2 + 5d) – d (d2 – 7d + 12). Show all work!
Example 5: Simplify 3 (2t2 – 4t – 15) + 6t (5t + 2). Show all work!
Example 6: Simplify 5n (4n3 + 6n2 – 2n + 3) – 4 (n2 + 7n). Show all work!
15
Date: ______________________
Section 8-6: Multiplying a Polynomial by a Monomial
Notes – Part B
SOLVE EQUATONS WITH POLYNOMIAL EXPRESSIONS
Example 1: Solve y (y – 12) + y (y + 2) + 25 = 2y (y + 5) – 15. Show all work!
Example 2: Solve b (12 + b) – 7 = 2b + b (-4 + b). Show all work!
16
Example 3: Solve -2 (w + 1) + w = 7 – 4w. Show all work!
Example 4: Solve x (x + 2) – 3x = x (x – 4) + 5. Show all work!
17
Date: ______________________
Section 8-7: Multiplying Polynomials
Notes – Part A
MULTIPLY BINOMIALS
Example 1: Find
( x + 3)
. Show all work!
× ( x + 2)
Example 2: Find
( y + 8)
. Show all work!
× ( y − 4)
18
Example 3: Find
Example 4: Find
( x − 7)
. Show all work!
× ( 6 x + 4)
(9 p− 1)
. Show all work!
× ( 3 p − 2)
19
Date: ______________________
Section 8-7: Multiplying Polynomials
Notes – Part B
MULTIPLY BINOMIALS
F – O – I – L:
Example 1: Find (z – 6) ( z – 12). Show all work!
Example 2: Find (x – 5) (x + 7). Show all work!
Example 3: Find (2y + 3) (6y -7). Show all work!
Example 4: Find (5x – 4) (2x + 8). Show all work!
20
MULTIPLY POLYNOMIALS
Example #5: Find each product. Show all work! (Hint: Use the Distributive Property)
a.) (4x + 9) (2x2 – 5x + 3)
b.) (y2 – 2y + 5) (6y2 – 3y + 1)
21
Related documents