Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Algebra 1B Unit 08 Sections 8.1-8.2,8.4-8.7 GUIDED NOTES NAME _________________________ Teacher _______________ Period ___________ 1 Date: ______________________ Section 8-1: Multiplying Monomials Notes – Part A MULTIPLY MONOMIALS Monomial: Constant: Example #1: Determine if each expression is a monomial. Explain your reasoning. 1.) 17 – s 2.) 8f2g 3.) ¾ 4.) xy 5.) h k 6.) p + q 7.) x 8.) abc 8 5 2 Product of Powers: Example #2: Simplify each expression. Show all work! 1.) (r4) (- 12r7) 2.) (6cd) (5c5d2) 3.) (5x7) (x6) 4.) (4ab6) (- 7 a2b3) 3 Date: ______________________ Section 8-1: Multiplying Monomials Notes – Part B POWERS OF MONOMIALS Power of a Power: Example #1: Simplify each expression. Show all work! 1.) { [ (-3)2 ]3 } 2 2.) [ (23)3 ] 2 3.) [ (23)2 ] 3 4.) [ (33)2 ] 4 4 Power of a Product: Example #2: Simplify each expression. Show all work! 1.) (3y5z)2 2.) (5xyz)3 3.) (x2y5)3 4.) 2 (a4b2)7 5 Date: ______________________ Section 8-2: Dividing Monomials Notes – Part A QUOTIENTS OF MONOMIALS Quotient of Powers: Example #1: Simplify each expression. Show all work! 1.) a 5b 8 ab 3 3.) 78 73 2.) x 7 y 12 x6 y3 4.) − 5 pq 7 10 p 6 q 3 6 Negative Exponents: Example #2: Simplify each expression. Show all work! 1.) 3.) b − 3c 2 d −5 x −6 y −4 z 9 2.) − 3a − 4 b 7 21a 2 b 7 c − 5 4.) 75 j 3 k − 5 15 j 5 k − 4 l − 8 7 Date: ______________________ Section 8-2: Dividing Monomials Notes – Part B QUOTIENTS OF EXPONENTS Zero Exponent: Example #1: Simplify each expression. Show all work! 3x 5 y 1.) − 8 xy 7 0 12m8 n 7 3.) 8m5 n 10 2.) t 3s0 t2 4.) b 0c8 c2 0 8 Power of a Quotient: Example #2: Simplify each expression. Show all work! 2 p2 1.) 3 4 2c 3 d 3.) 7z 2 4c 3 d 2 2.) 5e 4 f 7 3 2x5 y 4.) 5xy 7 3 −3 9 Date: ______________________ Section 8-4: Polynomials Notes DEGREE OF POLYNOMIAL Polynomial: Example #1: State whether each expression is a polynomial. If yes, identify it as a monomial, binomial, or trinomial. 1.) 6 – 4 2.) x2 + 2xy – 7 14d + 19e 2 5d 4 3.) 26b 4.) 5.) 2x – 3yz 6.) 8n3 + 5n-2 7.) - 8 8.) 4n2 + 5a + a + 9 5 10 Degree of a Polynomial: Example #2: Find the degree of each polynomial. 9.) 12 + 5b + 6bc + 8bc2 10.) 9x2 – 2x – 4 11.) 14g2h5i 12.) 5mn2 13.) -4x2y2 + 3x2 + 5 14.) 3a + 7ab – 2a2b + 16 Example #3: Arrange the terms of each polynomial so that the powers of x are in ascending order. 15.) 16 + 14x3 + 2x – x2 16.) 7y2 + 4x3 + 2xy3 – x2y2 17.) 7x2 + 2x4 – 11 18.) 2xy3 + 5x3 – y2 – 3x2y Example #4: Arrange the terms of each polynomial so that the powers of x are in descending order. 19.) 6x2 + 5 – 8x – 2x3 20.) 3a3x2 – a4 + 4ax5 + 9a2x 21.) 8 + 7x2 – 12xy3 – 4x3y 22.) a4 + ax2 – 2a3xy3 – 9x4y 11 Date: ______________________ Section 8-5: Adding and Subtracting Polynomials Notes ADD POLYNOMIALS Example 1: Find (3x2 – 4x + 8) + (2x – 7x2 – 5). Show all work! Example 2: Find (7y2 + 2y – 3) + (2 – 4y + 5y2). Show all work! Example 3: Find Example 4: Find 3x 2 − 2 x + 1 + x 2 + 4 x− 3 2x 2 + 5 + 6− 2 x + 3x 2 . Show all work! . Show all work! 12 SUBTRACT POLYNOMIALS Example 5: Find (3n2 + 13n3 + 5n) - (7n +4n3). Show all work! Example 6: Find (6y2 + 8y4 – 5y) - (9y4 – 7y + 2y2). Show all work! Example 7: Find Example 8: Find 5x + 4 . Show all work! − ( − 2 x + 3) 8x+ 4 − (6 x 2 − 3+ x ) . Show all work! 13 Date: ______________________ Section 8-6: Multiplying a Polynomial by a Monomial Notes – Part A PRODUCT OF MONOMIAL AND POLYNOMIAL Example 1: Find – 2x2 (3x2 – 7x + 10). Show all work! Example 2: Find 6y (4y2 – 9y – 7). Show all work! Example 3: Find -4xy (5x2 – 12xy + 7y2). Show all work! 14 Example 4: Simplify 4 (3d2 + 5d) – d (d2 – 7d + 12). Show all work! Example 5: Simplify 3 (2t2 – 4t – 15) + 6t (5t + 2). Show all work! Example 6: Simplify 5n (4n3 + 6n2 – 2n + 3) – 4 (n2 + 7n). Show all work! 15 Date: ______________________ Section 8-6: Multiplying a Polynomial by a Monomial Notes – Part B SOLVE EQUATONS WITH POLYNOMIAL EXPRESSIONS Example 1: Solve y (y – 12) + y (y + 2) + 25 = 2y (y + 5) – 15. Show all work! Example 2: Solve b (12 + b) – 7 = 2b + b (-4 + b). Show all work! 16 Example 3: Solve -2 (w + 1) + w = 7 – 4w. Show all work! Example 4: Solve x (x + 2) – 3x = x (x – 4) + 5. Show all work! 17 Date: ______________________ Section 8-7: Multiplying Polynomials Notes – Part A MULTIPLY BINOMIALS Example 1: Find ( x + 3) . Show all work! × ( x + 2) Example 2: Find ( y + 8) . Show all work! × ( y − 4) 18 Example 3: Find Example 4: Find ( x − 7) . Show all work! × ( 6 x + 4) (9 p− 1) . Show all work! × ( 3 p − 2) 19 Date: ______________________ Section 8-7: Multiplying Polynomials Notes – Part B MULTIPLY BINOMIALS F – O – I – L: Example 1: Find (z – 6) ( z – 12). Show all work! Example 2: Find (x – 5) (x + 7). Show all work! Example 3: Find (2y + 3) (6y -7). Show all work! Example 4: Find (5x – 4) (2x + 8). Show all work! 20 MULTIPLY POLYNOMIALS Example #5: Find each product. Show all work! (Hint: Use the Distributive Property) a.) (4x + 9) (2x2 – 5x + 3) b.) (y2 – 2y + 5) (6y2 – 3y + 1) 21