Download Solutions to Test One sample questions.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SHOW ALL CALCULATIONS. SlMPLlFY ANSWERS.
Page 1 of 6:
..
1. Find the derivatives
(a,
$[ x4 .e3x 1 =
(d)
$(cosh(arctan x))
-
-
3
4% Y
33
-+ 2. 3 e
=
&(arc+&
x2+ I
n)_
I
3 X
CALCULUS TWO TEST ONE
.5A~)akg
SHOW ALL CALCULATIONS. SIMPLIFY ANSWEkci.
(
S
~
L
~
A
~
O
I
Page 2 of 6
4
2. Find
Y =
by logarithmic differentiation.
e3X.(x3+ I ) ~
"Jm-
AlaJ=
-
+ 7.L
3s
lq 1 = A
- R (x7r v -'Is
/ x 3 + ~-I -$&h2+'+)
2X
-
-
3. Find the indefinite integrals.
X rr~%
C
(a)
1 x 3 InXdx
/
br
ysr'C;*1~.
(Useintegrationbyparts.)
dd
= x ~ $/X & -- AK &
\
=
IXY_R*)(
t'
.
o r
GO TO PAGE 3.
-
'f
~
~
CALCULUS TWO TESTONE
m t q p L 6
SHOW ALL CALCULATIONS. SlhlPLlFY ANSWERS.
S O G U T / O ~ ~ ~
.
-
Page 3 of 6.
= 2+x3
olu -. 3xZ&
L(
r ~ ( ~ ) c ~ i - i . u c ~d - * B - I
++C
+C
z
,+g p 2 - 4 ) W 4 -
x3
K .- X
gfi.-2
m 2 & =1 -
L(
Z
&
-
L&3(
7
x
dx
using trigonometric substitution.
2
x = YQx2- Y -- y h 2 .
3 2
,,(=
&O
&=
oaBa
fh.0
- 1-6
, J,-,
- 16
/
IA
\
GO TO PAGE 4.
1
16
,1j-t,
-"&
- /6
-
5 11
- \
7
t
/
1
48u3
CALCULUS TWO TEST ONE
Ckfz PLQ
SHOW ALL CALCULATIONS. SIMPLIFY ANSWERS.
4. Compute
GO TO PAGE 5.
x2
SOL
U T 0I hl8
Page 4 of 6.
CALCULUS TWO TEST ONE
OW^^^.
SHOW ALL;: CALCULATIONS. SIMPLIFY ANSWERS.
. ~ W UONS
T ~
a
Page 5 o i b
6. Solve the initial value problem.
j
c
S
!
y,
y =2fi
+I-
Vat~.UIS
CO~(X)'=
dx
where
J2=pmi 4
e -Qulal
e
y,,
;5
so
y C k X
0
J~L~IJ-J.
a
&4t*uf
tk
6 =
=4
( = -L/C"
+X
C,~
1
-& l m r I
Z
if X
aw+;4;ffen*f;ate.
Cc i
/
tt 3 . F .
1s
' f c,& ~
12, = &o".,d(
ecp-'-.
p L + i1 ~
wkRc
:+:&Je dt'f('*:*
- G C
C W-"- -~
t-erP
&
is o U 4
k K W k P .
C =a
7. Let f-be a one to one differentiable function.
f(1)-= 3, f(3) = 5, f(5) =9, f(1) = 4, F(3) = 6, f(5) = 8
Find, (f-' )
'(5) using the above information and a theorem.
fl
I
CALCULUS TWO TEST ONE SAMPLE QUESTIONS. ACTUAL TEST MAY VARY.
SHOW ALL CALCULATIONS. SIMPLIFY ANSWERS.
8. Compute
¶ 01
2x + 3
2
x + 2x + 2
¶ 01
dx =
2x + 2
2
x + 2x + 2
dx +
¶ 01
1
(x + 1 ) 2 + 1
dx
= [ln x 2 + 2x + 2 ] 10 + [tan −1 (x + 1 )] 10
= ln 1 2 + 2(1 ) + 2 − ln 0 2 + 2(0 ) + 2 + tan −1 (2 ) − tan −1 (1 )
= ln(5 ) − ln(2 ) + tan −1 (2 ) −
¶
9. Compute
4
0
dx
(25 − x 2 ) 5/2
x = 5 sin .
Let
Then
4
= ln(2.5 ) + tan −1 (2 ) −
using trigonometric substitution.
dx = 5 cos d, 25 − x 2 = 25 cos 2 ,
¶
1 =
1
x
.
The
integral
then
equals
5
0
4
4
sin −1 5 . Note that tan sin −1 5
¶ 0
5 cos d
3125 cos 5 = sin −1
1
¶ 0
=
1
625
=
1 1
625 3
GO TO PAGE 2.
1
4
= ¶0
1
d
625 cos 4 sec 2 sec 2 d =
tan 3 + tan 1
0
=
=
1
625
and
5 cos d
where
(25 cos 2 ) 5/2
= 43 . The integral equals
1
625
¶ 0
1
sec 4 d
¶ 0 (tan 2 1
1 1 4 3
625 3 3
+
4
3
+ 1 ) d(tan )
− 0=
172
50625
Related documents