Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Honors Precalculus Chapter 7 Review 1. Use a half-angle identity to find the exact value of sin15°. 2. Verify that cot x = csc x sec x is an identity. 3. Solve for all values of x: cot x sin x + cot x = 0 4. Using the sum and difference identities, find the exact value of cos 105°. ÍÈÍ π ˙˘˙ 4 5. If sin θ = and θ terminates on the interval ÍÍÍÍ 0, ˙˙˙˙ , find the exact value of tan 2θ. 5 ÍÎ 2 ˙˚ 6. Solve 4cos 2 x − 3 = 0 for all real values of x. 7. If θ is between 0° and 90° and tanθ = 7 find cosθ . 8 8. If α and β are the measures of two first quadrant angles and sin α = 9. Find the exact value of 4 5 and sin β = tan155 + tan(−95) . 1 − tan 155tan(−95) 10. Verify that sin2x = 2cot x sin 2 x is an identity. 11. Verify the identitiy: 1 − 2sinx cos x = (sin x − cos x) 2 12. If cos θ = 3 5 and θ terminates in the first quadrant, find the exact value of sin 2θ. 13. Using the sum and difference identities, find the exact value of sin 15°. 14. Verify that 15. Simplify 1 + cos 2θ 2cos θ = cos θ is an identity. 1 1 + . sinx + 1 sinx − 1 16. Use a half-angle identity to find the exact value of tan 105°. 17. If sin θ = 3 5 and θ terminates in the first quadrant, find the exact value of cos 2θ. 18. Verify that sin (π + θ) = −sin θ is an identity. 19. Find a numerical value of one trigonometric function of x if 5tanx cos x = 4. 20. Verify that sin θ = cos(90° − θ) is an identity. 1 5 13 , find tan(α − β). 21. Find a numerical value of one trigonometric function of x if sinx cot x = 22. If cosθ = 1 3 . 4 and cscθ < 0, find sinθ and tanθ. 7 23. Solve 5tanx = 5 3 for 0° ≤ x ≤ 180°. 24. Simplify (tanx − sec x) (tanx + sec x) 25. If α and β are the measures of two first quadrant angles and sin α = 4 5 and sin β = 5 13 find sin (α + β ). 26. Simplify tan 10x + tan3x . 1 − tan10x tan3x 27. Find a numerical value of one trigonometric function of x if sin 2 x − 1 = −1. 28. Which of the following are the solutions of cot 2 x + 2 = 2csc x on the interval [0, 2π)? 29. Find a numerical value of one trigonometric function of x if tan 2 x − sin 2 x sin 2 x = 5. 30. Using the sum and difference identities, find the exact value of tan 105°. 31. Verify that cos 2 x = sec 2 x − tan 2 x − sin 2 x is an identity. 32. Verify that cos 2 x(sec 2 x − 1) = sin 2 x is an identity. 33. Use a half-angle identity to find the exact value of tan 157.5°. 34. Solve th equation for all values of x. 2cot 2 x − 4 = 2 35. Find all solutions of each equation on the interval [0, 360). sin 2 x cos 2 x − 2sin 2 x = 0 36. Solve 2 − 3cos x = 5 + 3cos x for 0° ≤ x ≤ 180°. 37. Verify that cos (270° − θ) = −sin θ is an identity. 38. Verify that (sin x − cos x) 2 = 1 − 2sin x cos x is an identity. 1 39. If sin θ = − and θ terminates in the third quadrant, find the exact value of sin2θ. 4 40. Solve sin2θ = 2cos θ on the interval [0, 2π). 41. Simplify sec x sec x + . cos x + 1 cos x − 1 42. Verify sin(180° − θ) = sin θ . 43. Solve sinx + 2sinx cos x = 0 for 0° ≤ x ≤ 180°. 2 , 3 44. If sin θ = − and θ terminates in the fourth quadrant, find the exact value of tan 2θ. 5 45. Solve tan 2 x 2 − 2cos 2 x = 1 for 0 ≤ x ≤ 2π . 46. Solve tanx sec x − 2tanx = 0 for all real values of x. 7 47. If sin θ = − and θ terminates in the third quadrant, find the exact value of sin2θ . 9 48. Solve cot x + 2cot x sin x = 0 for 0° ≤ x ≤ 180°. 49. Verify the identitiy: sin 2 x = cos 2 x sec 2 x − cos 2 x 3