Download MOS Transistor Theory

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MOS Transistor Theory
•
nMOS Transistor
Two types of transistors
•
nMOS
pMOS
•
If the gate is “high”, the switch is on
If the gate is “low”, the switch is off
Drain
•
Digital integrated circuits use these
transistors essentially as a voltage
controlled switch
Gate
g=0
Source
g=1
3 March 2009
1
nMOS Transistor
3 March 2009
2
nMOS Transistor
MOS: Metal Oxide Semiconductor
Cross Section
Polysilicon
Gate
Source
n+
Gate oxide
Drain
n+
L
Silicon Dioxide
SiO2
Field-Oxide
(SiO2)
p substrate
Bulk (Body)
Gate
Drain
Source
Cross-section of an n-type transistor
B
3 March 2009
3
3 March 2009
4
nMOS Transistor
nMOS Transistor
Top View
•
Polysilicon
Gate
Source
n+
L
Drain
n+
•
W
p substrate
n areas have been doped with donor ions
of concentration ND - electrons are the
majority carriers
p areas have been doped with acceptor
ions of concentration NA - holes are the
majority carriers
Bulk (Body)
3 March 2009
5
3 March 2009
6
1
nMOS Transistor
nMOS Transistor
Source
Polysilicon
Gate
Drain
VGS ≤ 0
Source
-
+
+
-
-
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
Drain
-
-
+
_
Gate oxide
Polysilicon
Gate
Accumulation Mode
3 March 2009
7
nMOS Transistor
8
nMOS Transistor
Polysilicon
Gate
Depletion Region
Drain
-
Polysilicon
Gate
VGS ≤ VT
Source
-
3 March 2009
-
-
+
_
Inversion Region
VGS > VT
Source
-
-
Drain
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Depletion Mode
+
_
Inversion Mode
3 March 2009
9
nMOS Transistor
3 March 2009
10
nMOS Transistor
Depletion Region
Polysilicon
Gate
Inversion Region
VGS > VT
Source
-
Drain
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
_
n-channel enhancement MOS
Inversion Mode
3 March 2009
11
3 March 2009
12
2
Threshold Voltage
Threshold Voltage
VT = VT 0 + γ ( − 2Φ F + VSB − 2Φ F )
•
Dependent on
•
Gate conductor material
Gate insulator material
Channel Doping
Voltage difference between source and body
•
γ
is the body-effect coefficient and controls the impact
of the source to bulk voltage
Φ F is the Fermi potential and is dependent on doping
levels
•
Fermi potential: potential difference between Fermi
level and intrinsic Fermi level in the bulk of
semiconductor.
ΦF =
kT  N A 

ln
q  ni 
k: Boltzmann constant, T: temperature,
q: unit (electron) charge
3 March 2009
13
pMOS Transistor
3 March 2009
14
pMOS Transistor
Gate oxide
Polysilicon
Gate
Source
Drain
+ +
-
-
+ +
-
-
-
-
-
-
-
-
-
-
-
-
Accumulation Mode
3 March 2009
15
Source vs. Drain
16
nMOS Transistor
Source
Drain
Gate
3 March 2009
Drain
Ids
Source
Gate
Gate
Ids
VGS > VT
Drain
+
_
+
_
VDS < VGS - VT
VDS < VGS – VT
VGS – VDS > VT
VGD > VT
Source
nMOS: node with a higher voltage
is drain, VD > VS
3 March 2009
pMOS: node with a higher voltage
is source, VS > VD
17
Linear mode
3 March 2009
18
3
nMOS Transistor
MOS Transistor Characteristics
Linear Mode:
•
VGS>VT and VGD>VT
•
Assume that VT is constant
Drain
Gate
VGS > VT
+
_
+
_
VDS > VGS - VT

V2 
I DS = kn (VGS − VT )VDS − DS 
2 

VDS > VGS – VT
VGS – VDS < VT
VGD < VT
Saturation mode
3 March 2009
•
•
•
•
kn’
•
19
3 March 2009
20
MOS Transistor Characteristics
Example
•
= ( µ nCox ) is called the process transconductance
parameter
Gain factor of nMOS: kn = kn’ W/L
•
Source
Saturation Mode:
•
VGS>VT and VGD<VT
•
Assume that VT is constant
µn= 600 cm2 / V s
Cox = 7 x 10-8 F / cm2
W = 20 µm
L = 2 µm
Kn = µn Cox W/L = 0.42 mA / V2
3 March 2009
I DS = kn
21
3 March 2009
22
I-V Characteristics
In Summary
6
•
x 10
-4
VGS= 2.5 V
Cutoff region (VGS<VT)
5
I DS = 0
I DS
•
Saturation
Linear
Linear region (VGS>VT, VDS<VGS-VT or VGD>VT )
4
VGS= 2.0 V
IDS (A)
•
(VGS − VT )2
2

V2 
= k n (VGS − VT )VDS − DS 
2 

3
VDS = VGS - VT
2
VGS= 1.5 V
Saturated region (VGS>VT, VDS>VGS-VT or VGD<VT )
1
I DS = k n
(VGS − VT ) 2
2
0
VGS= 1.0 V
0
0.5
1
1.5
2
2.5
VDS (V)
Long channel transistor (L = 10µm)
3 March 2009
23
3 March 2009
24
4
MOS Transistor
Secondary Effects
Cutoff region (VGS<VT)
•
Body effect
Channel-length modulation
Drain punch-through
Short channel effect
Velocity saturation
•
D
S
•
Linear region (VGS>VT, VDS<VGS-VT)
•
•
•
D
S
•
Saturated region (VGS>VT, VDS>VGS-VT)
•
D
S
3 March 2009
25
Body Effect
•
•
•
3 March 2009
Channel-Length Modulation
We previously assumed a constant L
In reality, when VDS > (VGS-VT), the
channel is pinched off and the effective
channel length is reduced.
Net effect is that IDS is not constant in the
saturated region.
•
We assumed that VSB=0 - i.e. the source
potential equals the substrate potential
In certain situations, this assumption is not
true
Has the effect of raising the threshold
voltage
•
26
•
•
A negative bias on the well or substrate causes
the threshold to increase
Source
VDS > (VGS-VT)
3 March 2009
27
+
+
+
+
+
+
+
+
+
+
+
x 10
-4
VGS= 2.5 V
2
Linear region (VGS>VT, VDS<VGS-VT)
VGS= 2.0 V
I DS (A)
1.5

V2 
I DS = kn (VGS − VT )VDS − DS 
2 

0.5
(V − V ) 2
= k n GS T (1 + λVDS )
2
0
Linear
Relationship
VGS= 1.5 V
1
Saturated region (VGS>VT, VDS>VGS-VT)
I DS
-
28
Cutoff region (VGS<VT)
I DS = 0
•
+
3 March 2009
2.5
•
-
Channel-Length Modulation
MOS Transistor
•
Drain
-
-
VGS= 1.0 V
0
0.5
1
1.5
2
2.5
VDS (V)
Short channel transistor (L = 0.25µm)
3 March 2009
29
3 March 2009
30
5
MOS Transistor
•
Short Channel Effect
Cutoff region (VGS<VT)
•
D
S
•
Linear region (VGS>VT, VDS<VGS-VT)
•
D
S
•
•
Saturated region (VGS>VT, VDS>VGS-VT)
D
S
3 March 2009
31
•
3 March 2009
32
MOS Transistor
Velocity Saturation
•
At small gate lengths, electric field becomes
more pronounced
Electrons get excited with enough energy to
cause a substrate current
This causes change of transistor parameters threshold voltage, current flow, etc.
Assumption was that carrier velocity is
proportional to electric field
When channel is small, and the voltage is
large, the velocity can saturate
•
Cutoff region (VGS<VT)
•
Linear region (VGS>VT, VDS<VGS-VT)
I DS = 0

V2 
I DS = k n (VGS − VT )VDS − DS 
2 

 µ nξ ξ < ξc
µ nξ c ξ > ξ c
υ =
•
Saturated region (VGS>VT, VDS>VGS-VT)

V2 
I DS = kn (VGS − VT )VDSAT − DSAT 
2 

ξc is value of electric field at which velocity saturates
3 March 2009
33
Velocity Saturation
3 March 2009
34
MOS Gain Characteristics
ID
Long-channel device
•
Transconductance
VGS = VDD
Cutoff region
Linear region
Saturated region
gm =
dI DS
dVGS
gm = 0
Short-channel device
g m = knVDS
V DSAT
3 March 2009
VGS - V T
g m = k n (VGS − VT )
VDS
35
3 March 2009
36
6
pMOS I-V
nMOS Transistor
0
•
-0.2
VGS = -1.5V
Linear region (VGSn>VTn, VDSn<VGSn-VTn)
IDS (A)
-0.4

V2 
I DSn = k n (VGSn − VTn )VDSn − DSn 
2 

•
-0.6
Saturated region (VGSn>VTn, VDSn>VGSn-VTn)
I DSn
-4
VGS = -1.0V
I DSn = 0
•
x 10
Cutoff region (VGSn<VTn)
-0.8
(V − V ) 2
= k n GSn Tn (1 + λVDSn )
2
3 March 2009
-1
-2.5
VGS = -2.0V
Assume all variables
negative!
VGS = -2.5V
-2
-1.5
-1
-0.5
0
VDS (V)
37
3 March 2009
38
pMOS Transistor
•
Cutoff region (VGSp>VTp)
•
Linear region (VGSp<VTp, VDSp>VGSp-VTp)
I DSp = 0

V2 
I DSp = − k p (VGSp − VTp )VDSp − DSp 
2 

•
Saturated region (VGSp<VTp, VDSp<VGSp-VTp)
I DSp = − k p
3 March 2009
(VGSp − VTp ) 2
2
(1 + λ VDSp )
39
7