Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 26 Electricity and Magnetism Electric Field: Continuous Charge Distribution 1 Find electric field at point P. Continuous Charge Distribution qi ˆ Ei ke 2 ri ri E Ei i P qi dq ˆ ˆ r k i e 2 r 2 qi 0 ri r i E ke lim 2 Electric Field: Continuous Charge Distribution q ˆ E ke 2 r r Electric field E2 E1 E E1 E2 E3 E2 E Ei E1 i E2 In this situation, the system of charges can be modeled as continuous The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume E1 3 Electric Field: Continuous Charge Distribution The total electric charge is Q. What is the electric field at point P ? P P linear volume Q P Q surface Q 4 Continuous Charge Distribution: Charge Density The total electric charge is Q. Volume V Linear, length L Q Amount of charge in a small volume dl: Q Q dq dl dl L L Linear charge density Surface, area A Q Q Amount of charge in a small volume dV: Q Q dq dV dV V V Volume charge density Amount of charge in a small volume dA: Q dq dA dA A Q A Surface charge density5 Electric Field: Continuous Charge Distribution Procedure: – Divide the charge distribution into small elements, each of which contains Δq – Calculate the electric field due to one of these elements at point P – Evaluate the total field by summing the contributions of all the charge elements Symmetry: take advantage of any symmetry to simplify calculations Because the charge distribution is continuous qi dq ˆ ˆ r k i e 2 r 2 qi 0 ri r i E ke lim For the individual charge elements q E ke 2 rˆ r 6 Electric Field: Symmetry E E P P no symmetry no symmetry P x no symmetry 7 Electric Field: Symmetry q ˆ E ke 2 r r E q1 10 μC q2 10 μC E1,z E 2E1 cos φ E1 E2 5m E2 Electric field E E1 E2 E 2E1,z 2E2,z 5m 1 6m E E1,z E1,z E1 cos φ E1 E 4E1,z 4E2 cos φ 2 The symmetry gives us the direction of resultant electric field 8 Electric Field: Continuous Charge Distribution What is the electric field at point P ? P h 90o R O - linear charge density 9 What is the electric field at point P ? - linear charge density 1. Symmetry determines the direction of the electric field. E P h 90o R O 10 - linear charge density 2. Divide the charge distribution into small elements, each of which contains Δq What is the electric field at point P ? E E all elements z E all elements E z all elements E Ez E cos ke E E z h all elements P R E r Ez ke q cos 2 r q cos 2 r q l l 90o O 11 What is the electric field at point P ? - linear charge density 3. Evaluate the total field by summing the contributions of all the charge elements Δq E z ke all elements q cos 2 r l R E q l R E E z E P r h R 90 O ke all elements o R cos Replace Sum by Integral l r 2 2 E 0 d ke R r 2 cos x 12 What is the electric field at point P ? - linear charge density 4. Evaluate the integral 2 E d ke 0 R r 2 cos ke R r 2 z 2 cos d 2 ke 0 cos E E z P R O cos h h r h2 R2 E 2 ke r h 90o r 2 r h2 R2 E R h 2 hR R 2 3/ 2 l x 13 What is the electric field at point P ? P E E - linear charge density x h x a 0 b x From symmetry E E all elements q E ke 2 x q x E ke all elements q x k x 2 all elements e x 2 Replace the Sum by Integral b b dx E ke dx 2 ke 2 x x a a 14 What is the electric field at point P ? - surface charge density 1. Symmetry determines the direction of the electric field. E P h 90o O 15 What is the electric field at point P ? - surface charge density 2. Divide the charge distribution into small elements, each of which contains Δq 3. Evaluate the total field by summing the contributions of all the charge elements Δq E Approach A: straightforward E z all elements Ez E cos ke E E z P at point (x,y) r y x x, y E y q E ke 2 cos r all elements r h2 x2, y q x y h cos r h 90o q cos 2 r h h2 x2, y x O E all elements ke x y h h2 x2, y 16 3/ 2 What is the electric field at point P ? Approach A - surface charge density Replace the Sum by Integral E ke x y all elements E E z at point ( x , y ) ( , ) P r y x x, y h E ke O E dx dy h2 x2, y h h2 x2, y 3/ 2 3/ 2 ( x , y ) ( , ) y dxdy d d 90o h x 2 0 0 E ke d d h h2 2 3/ 2 17 What is the electric field at point P ? Approach A - surface charge density 2 Evaluate the Integral E ke d d 0 0 2 ke d E E z at point ( x , y ) ( , ) P r y x 0 x, y h 2 2 h 2 3/ 2 2 3/ 2 ke E 0 y h hdt 2 t 3/ 2 2 ke h h 2 t 1/ 2 0 2 ke 90o h h h x E 2 ke O 18 What is the electric field at point P ? Approach B - surface charge density E E all rings E 2 ke E Linear density of the ring E P Ring of width h 90o O h 2 h 2 3/ 2 Charge of the ring Q A 2 2 2 2 Length of the ring E E all rings 2 ke all rings E 2 ke d 0 h h 2 2 h 3/ 2 h 2 2 3/ 2 2 ke 19 E E 2 ke P h 2 hR R 2 E 2 | | ke 3/ 2 P Q 2 R h E Q0 O R 2 3/ 2 Q 2 R h Q0 90o R h 2 hR 90o R O 20 E plane σ 2πke σ 2ε0 E plane σ 0 E plane E plane |σ | 2πke | σ | 2ε0 Q0 Q σS E plane σ 0 E plane Q0 Q σS 21 Electric Field: Symmetry E E P P no symmetry no symmetry P x no symmetry 22 E E 2 | | ke P h 2 hR R 2 3/ 2 h 90o R O P E 0 h x a b 23 no symmetry, but we know E1 and E2 E E1 E1 21ke R2 P h1 R1 h 2 1 90o h2 E2 22 ke O E2 h h2 R2 2 2 h1 R1 2 R2 2 2 R1 90o O E E1 E2 1 E2 E E12 E22 E1 E 24 3/ 2 3/ 2 E E1 P 90o h2 O E2 h1 2 R1 90o O 1 25 E E x y no symmetry P We do not know the direction of electric field at point P r We need to find x and y component of electric field t a x x 0 b x E E Then all elements r t x E y all elements x x r t 2 x2 Ex 2 t t cos r t 2 x2 sin E x all elements Ey q x 2 Ex q sin r2 q E x ke 2 cos r E x ke ke q x sin k e x2 t 2 r2 all elements ke q x cos k e x2 t 2 r2 all elements all elements Then Ey all elements x x2 t 2 t x2 t 2 26 E E x y no symmetry P We do not know the direction of electric field at point P r We need to find x and y component of electric field t a x x 0 b x Ex ke all elements Ey all elements Ey 0 E ke x x x2 t 2 x2 t 2 x t b a b x2 t 2 x 2 h2 P h 0 ke ke a dx x x2 t 2 x2 t 2 dx t x2 t 2 x2 t 2 b ke a xdx ( x 2 t 2 )3 / 2 b ke t a dx ( x 2 t 2 )3 / 2 x a b the symmetry tells us that one of the component is 0, so we do not need 27 to calculate it. Important Example Find electric field E E σ 0 σ E 2ε0 σ 0 σ 0 E σ 0 E σ E 2ε0 28 Important Example σ E 2ε0 σ 0 Find electric field σ E 2ε0 σ 0 E E E E E E 0 E E E E σ E E E ε0 σ 0 E E E E E 0 σ 0 29 Important Example E 0 σ E ε0 E 0 σ 0 σ 0 σ 0 E σ 0 30 Motion of Charged Particle 31 Motion of Charged Particle • When a charged particle is placed in an electric field, it experiences an electrical force • If this is the only force on the particle, it must be the net force • The net force will cause the particle to accelerate according to Newton’s second law F qE - Coulomb’s law F ma - Newton’s second law q a E m 32 Motion of Charged Particle What is the final velocity? F qE F ma - Coulomb’s law - Newton’s second law vf |q| ay E m Motion in x – with constant velocity v0 Motion in x – with constant acceleration t l v0 |q| ay E m - travel time v x v0 After time t the velocity in y direction becomes |q| vy ayt Et m then q v f v02 Et m 2 vy vf 33