Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
HONORS PRECALCULUS / BERNHARDT Unit 4 Review Solutions 1. Two observers stand 100 feet apart on level ground. The angle of inclination from one observe to the peak of a mountain is 10º. The angle of inclination from the other observer is 15º. How tall is the mountain? y 10º 100 ft 15º x x tan15º = y (x + 100) tan10º = y (x + 100) tan10º = x tan15º x tan10º +100 tan10º = x tan15º 100 tan10º = x tan15º !x tan10º 100 tan10º = x(tan15º ! tan10º ) 100 tan10º =x tan15º ! tan10º " 100 tan10º % $# tan15º ! tan10º '& tan15º = y y ! 51.567 ft (Not much of a mountain.) 2. A bicycle is moving at 35 mph. How fast are its 20-inch diameter tires turning? 35!mi 5280!ft 12!in 1!hr 1!circumf 1!rev ! ! ! ! ! = 588.237!rpm 1!hr 1!mi 1!ft 60!min 20" !in 1!circumf 3. If sin x = !12 / 13 and tan x < 0 , in which quadrant is x? What are the six basic trigonometric ratios for x? Quadrant IV, because sine is negative and tangent is negative. opposite = –12 hypotenuse = 13 (!12)2 + x 2 = 132 x = 5 or –5 The adjacent side of the reference triangle is 5, b/c the angle is in Q4. cos x = 5 / 13 tan x = !12 / 5 csc x = !13 / 12 sec x = 13 / 5 cot x = !5 / 12 4. Write the equation of a sinusoid that has two adjacent maxima at (1, 2) and (3, 2) and a minimum at (6, 1). Period = 3 – 1 = 2 (This is the horizontal distance between maxima.) B= 2! 2! = =! P 2 y= 1 3 sin (! x + c ) + 2 2 2= 1 3 sin (! (1) + c ) + 2 2 1 1 = sin (! + c ) 2 2 sin !1 (1) = " + c ! =! +c 2 ! " =c 2 y= 1 # !& 3 sin % ! x " ( + 2 $ 2' 2 A= 2 !1 1 = 2 2 D= 2 +1 3 = 2 2 5. Find x if sec 2 x = 4 and 0 ≤ x ≤ 2π. (Hint: There are four answers.) 3 ± sec 2 x = ± sec x = ± 4 3 2 3 1 2 =± cos x 3 cos x = ± 3 2 If cos x = 3 ! 11! , then x = or . 2 6 6 If cos x = ! 3 5! 7! , then x = or . 2 6 6 6. Find four co-terminal angles for ! = 5" . At least one should be negative, and at 12 least one should be in degrees. != 5" = 75º 12 There are an infinite number of solutions, but all solutions can be written 5! as + 2k! or 75º +k ! 360º , where !k !! (i.e., k is a member of the set 12 of all integers). 7. Sketch the graphs of the six basic trig functions. Identify asymptotes, intercepts, and extrema. 8. Practice the unit circle. 9. Prove: 1 ! sin 2 x = cos x 1 + cos x 1 + cos x sin 2 x ! = cos x 1 + cos x 1 + cos x 1 + cos x ! sin 2 x = cos x 1 + cos x ( cos x + 1 ! sin 2 x 1 + cos x ) = cos x cos x + cos 2 x = cos x 1 + cos x cos x (1 + cos x ) = cos x 1 + cos x cos x = cos x 10. Prove: 1 ! tan x = csc x ! sec x sin x 1 tan x ! = csc x ! sec x sin x sin x csc x ! sin x 1 " = csc x ! sec x cos x sin x csc x ! 1 = csc x ! sec x cos x csc x ! sec x = csc x ! sec x 11. Prove: 1 1 + = !2 tan t sect sin t ! 1 sin t + 1 sin t + 1 sin t ! 1 + = !2 tan t sect sin 2 t ! 1 sin 2 t ! 1 2 sin t = !2 tan t sect sin 2 t ! 1 2 sin t = !2 tan t sect 1 ! cos 2 t ! 1 ( ) 2 sin t = !2 tan t sect ! cos 2 t !2 sin t 1 " = !2 tan t sect cost cost !2 tan t sect = !2 tan t sect 12. Solve on the interval [0, 2π): sin x = tan x . sin x ! tan x = 0 sin x ! sin x =0 cos x 1 % " sin x $ 1 ! ' =0 # cos x & sin x = 0!or!1 ! 1 =0 cos x sin x = 0!or!cos x = 1 x = 0,!! !!!or!!x = 0 13. Solve on the interval [0, 2π): 4 sin 2 x = 1 . sin 2 x = 1 4 sin 2 x = sin x = ± x= 1 4 1 2 ! 5! 7! 11! ,! ,! ,! 6 6 6 6 14. Solve on the interval [0, 2π): cos 2x = 1 + sin x . 1 ! 2 sin 2 x = 1 + sin x 0 = sin x + 2 sin 2 x 0 = sin x (1 + 2 sin x ) 0 = sin x!!or!!0 = 1 + 2 sin x 1 = sin x 2 7! 11! x = 0,!! !!or!!x = ,! 6 6 0 = sin x!!or!!! 15. Solve the triangle(s) and the area(s): !A = 40º , a = 54, b = 62 Because 62 sin 40º < 54 < 62 , this is the ambiguous case with two triangles. FIRST TRIANGLE sin 40º sin B = 54 62 !B = 47.562º !C = 180 " ( 47.562º +40º ) = 92.438º sin 40º sin 92.438º = 54 c c = 83.933 Area = 1 ! 54 ! 62 !sin 92.438º = 1,672.485 2 SECOND TRIANGLE !B = 180º "47.562º = 132.437º !C = 180º " (132.437º +40º ) = 7.563º sin 40º sin 7.563º = 54 c c = 11.057 Area = 1 ! 54 ! 62 !sin 7.563º = 220.326 2 16. Solve the triangle(s) and the area(s): !A = 75º , a = 51, b = 33 Because 51 > 33, there is only one triangle. sin 75º sin B = 51 33 !B = 38.683º !C = 180 " ( 38.683 + 75º ) = 66.317º sin 75º sin 66.317º = 51 c c = 48.352 Area = 1 ! 51! 33!sin 66.317º = 770.630 2 17. Solve the triangle(s) and the area(s): a = 6, b = 9, c = 4 6 2 = 9 2 + 4 2 ! 2 " 9 " 4 " cos A !A = 32.089º 9 2 = 6 2 + 4 2 ! 2 " 6 " 4 " cos B !B = 127.169º !C = 180º " ( 32.089º +127.169º ) = 20.742º Area = 1 ! 6 ! 9 ! sin 20.742º = 9.562 2 18. Solve the triangle(s) and the area(s): !A = 60º , a = 20, b = 30 Because 30 ! sin 60º > 20 , there are no triangles.