Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
09_ch07b_pre-calculas12_wncp_solution.qxd 5/22/12 6:30 PM Page 58 P R AC T I C E T E S T, p a g e s 6 8 1 – 6 8 4 1. Multiple Choice What are the roots of the equation 2 sin x cos x ⫽ 2 sin2x over the domain 0 ≤ x < 2? 5 A. x ⫽ 4 , x = 4 7 3 B. x ⫽ 4 , x = 4 5 C. x ⫽ 4 , x = 4 , x ⫽ 0, x ⫽ 3 7 D. x ⫽ 4 , x = 4 , x ⫽ 0, x ⫽ 2. Multiple Choice What is the simplest form of cos 5x sin 2x ⫺ sin 5x cos 2x? A. ⫺sin 3x B. sin 3x C. ⫺sin 7x D. sin 7x 3. Use graphing technology to determine the general solution of the equation cot x ⫽ sin x ⫹ 1. Give the answers to the nearest hundredth. Graph y 1 sin x 1 for 2 tan x ◊ x<2. The period of the function is 2. The approximate zeros of the function are: 5.708359, 1.570796, 0.5748263, 4.712389 Alternate zeros have a difference of 2. The general solution is: x 0.57 2k, k ç or x 4.71 2k, k ç 4. Solve the equation sin x ⫹ 1 ⫽ 2 cos2x over the domain 3 - 2 ≤ x < 2 . Give the exact roots. sin x 1 sin x 1 2 sin2x sin x 1 (2 sin x 1)(sin x 1) Either 2 sin x 1 0 2 cos2x 2(1 sin2x) 0 0 or sin x 1 0 1 sin x 1 sin x 2 x 7 2 x or x 6 6 7 The roots are: x , x , and x 6 2 6 58 Chapter 7: Trigonometric Equations and Identities—Practice Test—Solutions DO NOT COPY. ©P 09_ch07b_pre-calculas12_wncp_solution.qxd 5/22/12 6:30 PM Page 59 1 5. Determine the general solution of the equation sin 4x ⫽ √ over 2 the set of real numbers. 1 2 sin 4x √ 4 x 16 3 4 3 x 16 2 The period of sin 4x is or . 4 2 4x 4x or So, the general solution is: x 6. For the identity 3 k, k ç or x k, k ç 16 2 16 2 cos u + cot u ⫽ cot u 1 + sin u a) Determine the non-permissible values of u. Non-permissible values occur when: sin U 0, U k, k ç or 1 sin U 0 sin U 1 U k, k ç 2 b) Verify the identity graphically. Sketch or print the graph and explain how it verifies the identity. Graph y cos U sin U cos U and y . sin U 1 sin U cos U The graphs coincide so the identity is verified. ©P DO NOT COPY. Chapter 7: Trigonometric Equations and Identities—Practice Test—Solutions 59 09_ch07b_pre-calculas12_wncp_solution.qxd 5/22/12 6:30 PM Page 60 c) Verify the identity for u ⫽ 3 . Explain why this verification does not prove the identity. Substitute U L.S. in each side of the identity. 3 cos U cot U 1 sin U cos cot 3 3 1 sin 3 R.S. cot U cot 3 1 3 √ 1 1 a b a√ b 2 3 √ 3 1 a b 2 √ 32 √ 2 3 √ 2 3 2 1 √ 3 The left side is equal to the right side, so the identity is verified. This verification does not prove the identity because there may be values of U, apart from the non-permissible values, for which the left side does not equal the right side. d) Prove the identity. cos U cot U 1 sin U cos U cos U sin U 1 sin U sin U cos U cos U (sin U)(1 sin U) L.S. (cos U)(sin U 1) (sin U)(1 sin U) cos U sin U cot U R.S. The left side is equal to the right side, so the identity is proved. 60 Chapter 7: Trigonometric Equations and Identities—Practice Test—Solutions DO NOT COPY. ©P 09_ch07b_pre-calculas12_wncp_solution.qxd 5/22/12 6:30 PM Page 61 7. Given angle a in standard position with its terminal arm in 2 Quadrant 3 and sin a ⫽ ⫺3 , and angle b in standard position with 3 its terminal arm in Quadrant 4 and cos b ⫽ 7 , determine each exact value. a) cos (a ⫺ b) b) tan 2a Use: x2 y2 r2 For angle A, substitute: y 2, r 3 x2 (2)2 32 √ x— 5 √ x 5 since the terminal arm of angle A lies in Quadrant 3. √ So, cos A 5 3 For angle B, substitute: x 3, r 7 32 y2 72 √ y — 40 √ y 40 since the terminal arm of angle B lies in Quadrant 4. √ Substitute for A and B in: cos (A B) cos A cos B sin A sin B sin 2A cos 2A 2 sin A cos A cos2A sin2A √ 5 2 2a b a b 3 3 tan 2A √ 5 3 40 2 b a b a b a b 3 7 3 7 √ √ 3 5 2 40 21 a √ 8. Prove this identity: 2 2 cos 2U 2 sin 2U 1 cos 2U sin 2U 1 (1 2 sin2U) 2 sin U cos U 2 sin2U 2 sin U cos U sin U cos U a √ 2 2 5 b a b 3 3 2 √ , or 4 5 2 - 2 cos 2u sec2u - 1 ⫽ 2 sin 2u tan u L.S. 40 7 So, sin B R.S. sec2U 1 tan U tan2U tan U tan U sin U cos U The left side and the right side simplify to the same expression, so the identity is proved. ©P DO NOT COPY. Chapter 7: Trigonometric Equations and Identities—Practice Test—Solutions 61