Download Math 234 Fall 2015 Assignment 18 - Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 234 Fall 2015
Assignment 18 - Solutions - 1 Due Nov 3
Read Section 3.5, and 3.6
Show your work in detail.
1. Page 138:
Practice Problems: 5, 9, 11, 19, 21, 25
4. with given that y h  c 1 cos x  c 2 sin x
y ′′  y  sec x tan x with given that y h  c 1 cos x  c 2 sin x
Let y p  u 1 cos x  u 2 sin x.
i. Solve u ′1 and u ′2 :
sin x
u ′1
− sin x cos x
u ′2
cos x
u ′1
u ′2

0

sec x tan x
−1
cos x

−
sin x
0
− sin x cos x
sin 2 x
cos 2 x
tan x


sec x tan x
cos x − sin x
0
sin x cos x
sec x tan x
− tan 2 x
tanx
ii. Solve u 1 and u 2 :
u 1   − tan 2 xdx  − sec 2 x − 1dx  −tanx − x  x − tanx
sinx
u 2   tanxdx   cos x dx  − ln|cosx|
y p  x − tanx cos x − ln|cosx| sin x
The general solution of the differential equation:
y  c 1 cos x  c 2 sin xx − tanx cos x − ln|cosx| sin x
10. with given that y h  c 1 e 3x  c 2 e −3x (Hint: 9x
 9xe −3x . 
e 3x
y ′′ − 9y  9xe −3x
Let y p  u 1 e 3x  u 2 e −3x .
i. Solve u ′1 and u ′2 :
e 3x
u ′1
e −3x
u ′2
3e 3x −3e −3x
u ′1
u ′2

e 3x
e −3x
0

9xe −3x
−1
0
3e 3x −3e −3x
ii. Solve u 1 and u 2 :
u 1   32 xe −6x dx  − 14 xe −6x −
u 2   − 32 xdx  − 34 x 2
9xe −3x
1
24

3
2e 3x
xe −3x
− 32 x

e −6x
1 −6x 3x
y p  − 14 xe −6x − 24
e e  − 34 x 2 e −3x  − 241 e −3x 6x  1  18x 2 
The general solution of the differential equation :
1 −3x
y  c 1 e 3x  c 2 e −3x − 24
e 6x  1  18x 2 
1
3
2
xe −6x
− 32 x
12. with given that y h  c 1 e x  c 2 xe x
x
y ′′ − 2y ′  y  e 2
1x
Let y p  u 1 e x  u 2 xe x .
i. Solve u ′1 and u ′2 :
e x xe x
u ′1
e x 1  xe x
u ′2
u ′1
u ′2

0

ex
1  x2
−1
e x xe x
−
0
ex
1  x2
e x 1  xe x

x
x 1
1
x2  1
2
ii. Solve u 1 and u 2 :
u 1   − 2 x dx  − 12 lnx 2  1
x 1
u 2   2 1 dx  tan −1 x
x 1
y p  − 12 lnx 2  1e x  x tan −1 xe x
The general solution of the differential equation :
y  c 1 e x  c 2 xe x − 12 lnx 2  1e x  x tan −1 xe x
26. with given that y h  c 1  c 2 cos2x  c 3 sin2x
Let y p  u 1  u 2 cos2x  u 3 sin2x.
i. Solve u ′1 , u ′2 and u ′3 :
1 cos2x
u ′1
sin2x
0 −2 sin2x 2 cos2x
u ′2
0 −4 cos2x −4 sin2x
u ′3
0

0
sec2x
Use Cramer’s Rule:
1 cos2x
det
sin2x
0 −2 sin2x 2 cos2x
 18 sin 2 2x  8 cos 2 2x  8
0 −4 cos2x −4 sin2x
detA 1   det
0
cos2x
sin2x
0
−2 sin2x 2 cos2x
 sec2x2 cos 2 2x  2 sin 2 2x  2
sec2x −4 cos2x −4 sin2x
detA 2   det
1 0
sin2x
0 0
2 cos2x
0 sec2x −4 sin2x
2
 10 − 2 cos2x sec2x  −2
1 cos2x
detA 3   det
0
0 −2 sin2x 0
 1−2 sin2x sec2x − 0  −2 tan2x
0 −4 cos2x sec2x
detA 1 
2 sec2x

 1 sec2x
u ′1 
4
8
detA
detA 2 
u ′2 
 −2  −1
8
4
detA
detA 3 
u ′3 
 − 1 tan2x
4
detA
ii. Solve u 1 , u 2 and u 3 :
u 1   14 sec2xdx  18 ln|sec2x  tan2x|
u 2   − 1 dx  − 14 x
4
u 3   − 1 tan2xdx  − 14 − 12  ln|cos2x|  18 ln|cos2x|
4
1
y p  8 ln|sec2x  tan2x| − 14 x cos2x  18 ln|cos2x| sin2x
The general solution of the differential equation is
y  c 1  c 2 cos2x  c 3 sin2x  18 ln|sec2x  tan2x| − 14 x cos2x 
3
1
8
ln|cos2x| sin2x
Related documents