Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 234 Fall 2015 Assignment 18 - Solutions - 1 Due Nov 3 Read Section 3.5, and 3.6 Show your work in detail. 1. Page 138: Practice Problems: 5, 9, 11, 19, 21, 25 4. with given that y h c 1 cos x c 2 sin x y ′′ y sec x tan x with given that y h c 1 cos x c 2 sin x Let y p u 1 cos x u 2 sin x. i. Solve u ′1 and u ′2 : sin x u ′1 − sin x cos x u ′2 cos x u ′1 u ′2 0 sec x tan x −1 cos x − sin x 0 − sin x cos x sin 2 x cos 2 x tan x sec x tan x cos x − sin x 0 sin x cos x sec x tan x − tan 2 x tanx ii. Solve u 1 and u 2 : u 1 − tan 2 xdx − sec 2 x − 1dx −tanx − x x − tanx sinx u 2 tanxdx cos x dx − ln|cosx| y p x − tanx cos x − ln|cosx| sin x The general solution of the differential equation: y c 1 cos x c 2 sin xx − tanx cos x − ln|cosx| sin x 10. with given that y h c 1 e 3x c 2 e −3x (Hint: 9x 9xe −3x . e 3x y ′′ − 9y 9xe −3x Let y p u 1 e 3x u 2 e −3x . i. Solve u ′1 and u ′2 : e 3x u ′1 e −3x u ′2 3e 3x −3e −3x u ′1 u ′2 e 3x e −3x 0 9xe −3x −1 0 3e 3x −3e −3x ii. Solve u 1 and u 2 : u 1 32 xe −6x dx − 14 xe −6x − u 2 − 32 xdx − 34 x 2 9xe −3x 1 24 3 2e 3x xe −3x − 32 x e −6x 1 −6x 3x y p − 14 xe −6x − 24 e e − 34 x 2 e −3x − 241 e −3x 6x 1 18x 2 The general solution of the differential equation : 1 −3x y c 1 e 3x c 2 e −3x − 24 e 6x 1 18x 2 1 3 2 xe −6x − 32 x 12. with given that y h c 1 e x c 2 xe x x y ′′ − 2y ′ y e 2 1x Let y p u 1 e x u 2 xe x . i. Solve u ′1 and u ′2 : e x xe x u ′1 e x 1 xe x u ′2 u ′1 u ′2 0 ex 1 x2 −1 e x xe x − 0 ex 1 x2 e x 1 xe x x x 1 1 x2 1 2 ii. Solve u 1 and u 2 : u 1 − 2 x dx − 12 lnx 2 1 x 1 u 2 2 1 dx tan −1 x x 1 y p − 12 lnx 2 1e x x tan −1 xe x The general solution of the differential equation : y c 1 e x c 2 xe x − 12 lnx 2 1e x x tan −1 xe x 26. with given that y h c 1 c 2 cos2x c 3 sin2x Let y p u 1 u 2 cos2x u 3 sin2x. i. Solve u ′1 , u ′2 and u ′3 : 1 cos2x u ′1 sin2x 0 −2 sin2x 2 cos2x u ′2 0 −4 cos2x −4 sin2x u ′3 0 0 sec2x Use Cramer’s Rule: 1 cos2x det sin2x 0 −2 sin2x 2 cos2x 18 sin 2 2x 8 cos 2 2x 8 0 −4 cos2x −4 sin2x detA 1 det 0 cos2x sin2x 0 −2 sin2x 2 cos2x sec2x2 cos 2 2x 2 sin 2 2x 2 sec2x −4 cos2x −4 sin2x detA 2 det 1 0 sin2x 0 0 2 cos2x 0 sec2x −4 sin2x 2 10 − 2 cos2x sec2x −2 1 cos2x detA 3 det 0 0 −2 sin2x 0 1−2 sin2x sec2x − 0 −2 tan2x 0 −4 cos2x sec2x detA 1 2 sec2x 1 sec2x u ′1 4 8 detA detA 2 u ′2 −2 −1 8 4 detA detA 3 u ′3 − 1 tan2x 4 detA ii. Solve u 1 , u 2 and u 3 : u 1 14 sec2xdx 18 ln|sec2x tan2x| u 2 − 1 dx − 14 x 4 u 3 − 1 tan2xdx − 14 − 12 ln|cos2x| 18 ln|cos2x| 4 1 y p 8 ln|sec2x tan2x| − 14 x cos2x 18 ln|cos2x| sin2x The general solution of the differential equation is y c 1 c 2 cos2x c 3 sin2x 18 ln|sec2x tan2x| − 14 x cos2x 3 1 8 ln|cos2x| sin2x